MicroRNA-22 Regulates Cardiac Hypertrophy and Remodeling in Response to Stress

Author:

Huang Zhan-Peng1,Chen Jinghai1,Seok Hee Young1,Zhang Zheng1,Kataoka Masaharu1,Hu Xiaoyun1,Wang Da-Zhi1

Affiliation:

1. From the Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA (Z.-P.H., J.C., H.Y.S., Z.Z., M.K., X.H.,D.-Z.W.); Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, China (Z.Z.); and Harvard Stem Cell Institute, Harvard University Cambridge, Cambridge, MA (D.-Z.W.).

Abstract

Rationale: The adult heart is composed primarily of terminally differentiated, mature cardiomyocytes that express signature genes related to contraction. In response to mechanical or pathological stress, the heart undergoes hypertrophic growth, a process defined as an increase in cardiomyocyte cell size without an increase in cell number. However, the molecular mechanism of cardiac hypertrophy is not fully understood. Objective: To identify and characterize microRNAs that regulate cardiac hypertrophy and remodeling. Methods and Results: Screening for muscle-expressed microRNAs that are dynamically regulated during muscle differentiation and hypertrophy identified microRNA-22 (miR-22) as a cardiac- and skeletal muscle–enriched microRNA that is upregulated during myocyte differentiation and cardiomyocyte hypertrophy. Overexpression of miR-22 was sufficient to induce cardiomyocyte hypertrophy. We generated mouse models with global and cardiac-specific miR-22 deletion, and we found that cardiac miR-22 was essential for hypertrophic cardiac growth in response to stress. miR-22–null hearts blunted cardiac hypertrophy and cardiac remodeling in response to 2 independent stressors: isoproterenol infusion and an activated calcineurin transgene. Loss of miR-22 sensitized mice to the development of dilated cardiomyopathy under stress conditions. We identified Sirt1 and Hdac4 as miR-22 targets in the heart. Conclusions: Our studies uncover miR-22 as a critical regulator of cardiomyocyte hypertrophy and cardiac remodeling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3