Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated MuRF1 Expression

Author:

Du Bois Philipp1,Pablo Tortola Cristina1,Lodka Doerte1,Kny Melanie1,Schmidt Franziska1,Song Kunhua1,Schmidt Sibylle1,Bassel-Duby Rhonda1,Olson Eric N.1,Fielitz Jens1

Affiliation:

1. From the Department of Molecular Cardiology, Experimental and Clinical Research Center (ECRC), a Cooperation between Max-Delbrück-Centrum and Charité Universitätsmedizin Berlin, Campus Buch, Berlin, Germany (P.D.B., C.P.T., D.L., M.K., F.S., S.S., J.F.); Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany (J.F.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas (K.S., R.B.-D., E.N.O.).

Abstract

Rationale: Skeletal muscle wasting with accompanying cachexia is a life threatening complication in congestive heart failure. The molecular mechanisms are imperfectly understood, although an activated renin–angiotensin aldosterone system has been implicated. Angiotensin (Ang) II induces skeletal muscle atrophy in part by increased muscle-enriched E3 ubiquitin ligase muscle RING-finger-1 ( MuRF1 ) expression, which may involve protein kinase D1 (PKD1). Objective: To elucidate the molecular mechanism of Ang II–induced skeletal muscle wasting. Methods and Results: A cDNA expression screen identified the lysosomal hydrolase-coordinating transcription factor EB (TFEB) as novel regulator of the human MuRF1 promoter. TFEB played a key role in regulating Ang II–induced skeletal muscle atrophy by transcriptional control of MuRF1 via conserved E-box elements. Inhibiting TFEB with small interfering RNA prevented Ang II–induced MuRF1 expression and atrophy. The histone deacetylase-5 (HDAC5), which was directly bound to and colocalized with TFEB, inhibited TFEB-induced MuRF1 expression. The inhibition of TFEB by HDAC5 was reversed by PKD1, which was associated with HDAC5 and mediated its nuclear export. Mice lacking PKD1 in skeletal myocytes were resistant to Ang II–induced muscle wasting. Conclusion: We propose that elevated Ang II serum concentrations, as occur in patients with congestive heart failure, could activate the PKD1/HDAC5/TFEB/MuRF1 pathway to induce skeletal muscle wasting.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3