Pivotal Role of mTORC2 and Involvement of Ribosomal Protein S6 in Cardioprotective Signaling

Author:

Yano Toshiyuki1,Ferlito Marcella1,Aponte Angel1,Kuno Atsushi1,Miura Tetsuji1,Murphy Elizabeth1,Steenbergen Charles1

Affiliation:

1. From the Department of Pathology (T.Y., C.S.) and Division of Cardiology, Department of Medicine (M.F.), Johns Hopkins University, Baltimore, MD; Proteomics Core (A.A.) and Systems Biology Center (E.M.), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD; and Departments of Cardiovascular, Renal, and Metabolic Medicine (T.Y., A.K., T.M.) and Pharmacology (A.K.), Sapporo Medical University, Sapporo, Japan.

Abstract

Rationale: There is tight coupling between Akt activation and suppression of cell death. Full Akt activation requires mammalian target of rapamycin complex 2 (mTORC2), but the regulation of mTORC2 is unclear. Objective: To gain new insights into mechanisms of mTORC2/Akt signaling. Methods and Results: The role of mTORC2 in cardioprotection was examined. In perfused mouse hearts, ischemic preconditioning increased mTORC2 activity, leading to phosphorylation of Akt on Ser473. The protective effect of ischemic preconditioning was lost by pretreatment with dual mTORC inhibitors but not with rapamycin, an mTORC1 inhibitor, which indicates the fundamental role of mTORC2 activation in cardioprotection. Next, the regulation and downstream targets of mTORC2/Akt signaling were explored. We have found that ischemic preconditioning and other Akt activators (insulin and opioids) result in phosphorylation of ribosomal protein S6 (Rps6) at Ser235/236 in mouse hearts and neonatal rat ventricular myocytes. Rps6 interacts with components of mTORC2, and siRNA-mediated knockdown of Rps6 attenuates insulin-induced mTORC2 activation and Akt-Ser473 phosphorylation. On the other hand, Rps6 overexpression enhanced Akt-Ser473 phosphorylation, indicating that Rps6 activation amplifies mTORC2/Akt signaling. Disruption of the Rps6/mTORC2 pathway by knockdown of Rps6 or rictor abrogated insulin-induced cytoprotection against oxidative stress. Although rapamycin blocks Rps6-dependent mTORC2 activation, mTORC2 is still activated by an alternative signaling pathway, demonstrating the redundancy in cardioprotective signaling. Conclusions: Activation of mTORC2 plays a pivotal role in cardioprotection, and Rps6 is a convergence point of cardioprotective signaling, providing positive feedback regulation of mTORC2/Akt signaling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3