Humans With Atherosclerosis Have Impaired ABCA1 Cholesterol Efflux and Enhanced High-Density Lipoprotein Oxidation by Myeloperoxidase

Author:

Shao Baohai1,Tang Chongren1,Sinha Abhishek1,Mayer Philip S.1,Davenport George D.1,Brot Nathan1,Oda Michael N.1,Zhao Xue-Qiao1,Heinecke Jay W.1

Affiliation:

1. From the Department of Medicine, University of Washington, Seattle (B.S., C.T., A.S., P.S.M., G.D.D., X.-Q.Z., J.W.H.); Diabetes and Obesity Center of Excellence, University of Washington, Seattle (B.S, C.T., P.S.M., J.W.H.); Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY (N.B.); Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter (N.B.); and Children’s Hospital Oakland Research Institute, CA (M.N.O.).

Abstract

Rationale: The efflux capacity of high-density lipoprotein (HDL) with cultured macrophages associates strongly and negatively with coronary artery disease status, indicating that impaired sterol efflux capacity might be a marker—and perhaps mediator—of atherosclerotic burden. However, the mechanisms that contribute to impaired sterol efflux capacity remain poorly understood. Objective: Our aim was to determine the relationship between myeloperoxidase-mediated oxidative damage to apolipoprotein A-I, the major HDL protein, and the ability of HDL to remove cellular cholesterol by the ATP-binding cassette transporter A1 (ABCA1) pathway. Methods and Results: We quantified both site-specific oxidation of apolipoprotein A-I and HDL’s ABCA1 cholesterol efflux capacity in control subjects and subjects with stable coronary artery disease or acute coronary syndrome. Subjects with coronary artery disease and acute coronary syndrome had higher levels of chlorinated tyrosine 192 and oxidized methionine 148 compared with control subjects. In contrast, plasma levels of myeloperoxidase did not differ between the groups. HDL from the subjects with coronary artery disease and acute coronary syndrome was less able to accept cholesterol from cells expressing ABCA1 compared with HDL from control subjects. Levels of chlorinated tyrosine and oxidized methionine associated inversely with ABCA1 efflux capacity and positively with atherosclerotic disease status. These differences remained significant after adjusting for HDL-cholesterol levels. Conclusions: Our observations indicate that myeloperoxidase may contribute to the generation of dysfunctional HDL with impaired ABCA1 efflux capacity in humans with atherosclerosis. Quantification of chlorotyrosine and oxidized methionine in circulating HDL might be useful indicators of the risk of cardiovascular disease that are independent of HDL-cholesterol.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3