High-Density Lipoprotein and Atherosclerosis Regression

Author:

Feig Jonathan E.1,Hewing Bernd1,Smith Jonathan D.1,Hazen Stanley L.1,Fisher Edward A.1

Affiliation:

1. From the Departments of Medicine (Cardiology) and Cell Biology, Marc and Ruti Bell Vascular Biology Program, New York University School of Medicine, New York, NY (J.E.F., B.H., E.A.F.); and Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH (J.D.S., S.L.H.). J.E.F. is currently affiliated with Department of Medicine (Cardiology), Mount Sinai School of Medicine, New York, NY. B.H. is currently affiliated with Medizinische Klinik für Kardiologie...

Abstract

High-density lipoprotein (HDL) particles transport (among other molecules) cholesterol (HDL-C). In epidemiological studies, plasma HDL-C levels have an inverse relationship to the risk of atherosclerotic cardiovascular disease. It has been assumed that this reflects the protective functions of HDL, which include their ability to promote cholesterol efflux. Yet, several recent pharmacological and genetic studies have failed to demonstrate that increased plasma levels of HDL-C resulted in decreased cardiovascular disease risk, giving rise to a controversy regarding whether plasma levels of HDL-C reflect HDL function, or that HDL is even as protective as assumed. The evidence from preclinical and (limited) clinical studies shows that HDL can promote the regression of atherosclerosis when the levels of functional particles are increased from endogenous or exogenous sources. The data show that regression results from a combination of reduced plaque lipid and macrophage contents, as well as from a reduction in its inflammatory state. Although more research will be needed regarding basic mechanisms and to establish that these changes translate clinically to reduced cardiovascular disease events, that HDL can regress plaques suggests that the recent trial failures do not eliminate HDL from consideration as an atheroprotective agent but rather emphasizes the important distinction between HDL function and plasma levels of HDL-C.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3