S100A8 and S100A9 Mediate Endotoxin-Induced Cardiomyocyte Dysfunction via the Receptor for Advanced Glycation End Products

Author:

Boyd John H.1,Kan Bernard1,Roberts Haley1,Wang Yingjin1,Walley Keith R.1

Affiliation:

1. From the Critical Care Research Laboratories, St. Paul’s Hospital, University of British Columbia, Vancouver, Canada.

Abstract

Cardiovascular dysfunction as a result of sepsis is the leading cause of death in the critically ill. Cardiomyocytes respond to infectious pathogens with a Toll-like receptor–initiated proinflammatory response in conjunction with a decrease in contractility, although the downstream events linking Toll-like receptor activation and reduced cardiac contractility remain to be elucidated. Using microarray analysis of cardiac tissue exposed to systemic lipopolysaccharide (LPS), we discovered that 2 small calcium-regulating proteins (S100A8 and S100A9) are highly upregulated. HL-1 cardiomyocytes, isolated primary cardiomyocytes, and live mice were exposed to LPS, whereas beating HL-1 cells had S100A8 and S100A9 overexpressed and their calcium flux quantified. Using in vivo microbubble technology, we delivered S100A8 and S100A9 to normal mouse hearts; using the same technology, we inhibited S100A9 production in mouse hearts and subsequently exposed them to LPS. Coimmunoprecipitation of S100A8 and S100A9 identified interaction with RAGE (the receptor for advanced glycation end products), the cardiac function and postreceptor signaling of which were investigated. HL-1 cardiomyocytes, isolated primary cardiomyocytes, and whole hearts exposed to LPS have large increases in S100A8 and S100A9. Cardiac overexpression of S100A8 and S100A9 led to a RAGE-dependent decrease in calcium flux and, in the intact mouse, to a decreased cardiac ejection fraction, whereas knockdown of S100A9 attenuated LPS-induced cardiac dysfunction. Cardiomyocytes exposed to LPS express S100A8 and S100A9, leading to a RAGE-mediated decrease in cardiomyocyte contractility. This finding provides a novel mechanistic link between circulating pathogen-associated molecular products and subsequent cardiac dysfunction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3