Oxygen Deprivation Triggers Upregulation of Early Growth Response-1 by the Receptor for Advanced Glycation End Products

Author:

Chang Jong Sun1,Wendt Thoralf1,Qu Wu1,Kong Linghua1,Zou Yu Shan1,Schmidt Ann Marie1,Yan Shi-Fang1

Affiliation:

1. From the Division of Surgical Science, Department of Surgery, Columbia University Medical Center, New York.

Abstract

Myocardial infarction, stroke, and venous thromboembolism are characterized by oxygen deprivation. In hypoxia, biological responses are activated that evoke tissue damage. Rapid activation of early growth response-1 in hypoxia upregulates fundamental inflammatory and prothrombotic stress genes. We probed the mechanisms mediating regulation of early growth response-1 and demonstrate that hypoxia stimulates brisk generation of advanced glycation end products (AGEs) by endothelial cells. Via AGE interaction with their chief signaling receptor, RAGE, membrane translocation of protein kinase C-βII occurs, provoking phosphorylation of c-Jun NH 2 -terminal kinase and increased transcription of early growth response-1 and its downstream target genes. These findings identify RAGE as a master regulator of tissue stress elicited by hypoxia and highlight this receptor as a central therapeutic target to suppress the tissue injury–provoking effects of oxygen deprivation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3