Tunnel Propagation of Postshock Activations as a Hypothesis for Fibrillation Induction and Isoelectric Window

Author:

Ashihara Takashi1,Constantino Jason1,Trayanova Natalia A.1

Affiliation:

1. From the Department of Cardiovascular Medicine (T.A.), Shiga University of Medical Science, Otsu, Japan; and Department of Biomedical Engineering and Institute for Computational Medicine (J.C., N.A.T.), Johns Hopkins University, Baltimore, Md.

Abstract

Comprehensive understanding of the ventricular response to shocks is the approach most likely to succeed in reducing defibrillation threshold. We propose a new theory of shock-induced arrhythmogenesis that unifies all known aspects of the response of the heart to monophasic (MS) and biphasic (BS) shocks. The central hypothesis is that submerged “tunnel” propagation of postshock activations through shock-induced intramural excitable areas underlies fibrillation induction and the existence of isoelectric window. We conducted simulations of fibrillation induction using a realistic bidomain model of rabbit ventricles. Following pacing, MS and BS of various strengths/timings were delivered. The results demonstrated that, during the isoelectric window, an activation originated deep within the ventricular wall, arising from virtual electrodes; it then propagated fully intramurally through an excitable tunnel induced by the shock, until it emerged onto the epicardium, becoming the earliest-propagated postshock activation. Differences in shock outcomes for MS and BS were found to stem from the narrower BS intramural postshock excitable area, often resulting in conduction block, and the difference in the mechanisms of origin of the postshock activations, namely intramural virtual electrode–induced phase singularity for MS and virtual electrode–induced propagated graded response for BS. This study provides a novel analysis of the 3D mechanisms underlying the origin of postshock activations in the process of fibrillation induction by MS and BS and the existence of isoelectric window. The tunnel propagation hypothesis could open a new avenue for interventions exploration to achieve significantly lower defibrillation threshold.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3