The Hydrodynamically Relevant Endothelial Cell Glycocalyx Observed In Vivo Is Absent In Vitro

Author:

Potter Daniel R.1,Damiano Edward R.1

Affiliation:

1. From the Department of Biomedical Engineering, Boston University, Mass.

Abstract

In recent years, the endothelial cell surface glycocalyx has emerged as a structure of fundamental importance to a broad range of phenomena that determine cardiovascular health and disease. This new understanding of the functional significance of the glycocalyx has been made possible through recently developed experimental techniques using intravital microscopy that are capable of directly probing the glycocalyx in vivo. Using fluorescent microparticle image velocimetry in venules and endothelialized cylindrical collagen microchannels, we show that the hydrodynamically relevant endothelial cell glycocalyx surface layer observed in microvessels in vivo (0.52±0.28 μm thickness), which is a fundamental determinant of the hydrodynamic and mechanical environment at the endothelial cell surface, is absent from human umbilical vein (0.03±0.04 μm thickness) and bovine aortic (0.02±0.04 μm thickness) endothelial cells grown and maintained under standard cell culture conditions in vitro. An endothelial surface–bound glycosaminoglycan layer, not necessarily indicative of but having similar hydrodynamic properties to the endothelial glycocalyx observed in vivo, was detected (0.21±0.27 μm thickness) only after hyaluronan and chondroitin sulfate were added to the cell culture media at hyperphysiological concentrations (0.2 mg/mL perfused for 75 minutes). The implications of this glycocalyx deficiency under standard cell culture conditions in these pervasive in vitro models broadly impact a myriad of studies involving endothelial cell monolayers in which inferences are made that may depend on endothelial cell surface chemistry. In light of these findings, conclusions drawn from such studies in the areas of microvascular permeability, inflammation, mechanotransduction, and atherosclerosis must be carefully reconsidered.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3