Ca 2+ /Calmodulin-Dependent Protein Kinase IIδ and Protein Kinase D Overexpression Reinforce the Histone Deacetylase 5 Redistribution in Heart Failure

Author:

Bossuyt Julie1,Helmstadter Kathryn1,Wu Xu1,Clements-Jewery Hugh1,Haworth Robert S.1,Avkiran Metin1,Martin Jody L.1,Pogwizd Steven M.1,Bers Donald M.1

Affiliation:

1. From the Departments of Physiology (J.B., K.H., X.W., H.C.-J., D.M.B.) and Medicine (S.M.P.) and Cardiovascular Institute (J.L.M.), Loyola University Chicago, Maywood, Ill; and Cardiovascular Division (R.S.H., M.A.), King’s College London, United Kingdom.

Abstract

Cardiac hypertrophy and heart failure (HF) are associated with reactivation of fetal cardiac genes, and class II histone deacetylases (HDACs) (eg, HDAC5) have been strongly implicated in this process. We have shown previously that inositol trisphosphate, Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), and protein kinase (PK)D are involved in HDAC5 phosphorylation and nuclear export in normal adult ventricular myocytes and also that CaMKIIδ and inositol trisphosphate receptors are upregulated in HF. Here we tested whether, in our rabbit HF model, nucleocytoplasmic shuttling of HDAC5 was altered either at baseline or in response to endothelin-1, which would indicate HDAC5 phosphorylation and transcription effects. The fusion protein HDAC5–green fluorescent protein (HDAC5-GFP) was more cytosolic in HF myocytes ( F nuc / F cyto 3.3±0.3 vs 7.2±0.4 in control), and HDAC5 was more phosphorylated. Despite this baseline cytosolic HDAC5 shift, endothelin-1 produced more rapid HDAC5-GFP nuclear export in HF versus control myocytes. We also find that PKD and CaMKIIδ C expression and activation state are increased in both rabbit and human HF. Inhibition of either CaMKII or PKD in HF myocytes partially restored the HDAC5-GFP F nuc / F cyto toward control, and simultaneous inhibition restored F nuc / F cyto to that in control myocytes. Moreover, adenovirus-mediated overexpression of PKD, CaMKIIδ B , or CaMKIIδ C reduced baseline HDAC5 F nuc / F cyto in control myocytes (3.4±0.5, 3.8±0.5, and 5.2±0.5, respectively), approaching that seen in HF. We conclude that chronic upregulation and activation of inositol trisphosphate receptors, CaMKII, and PKD in HF shifts HDAC5 out of the nucleus, derepressing transcription of hypertrophic genes. This may directly contribute to the development and/or maintenance of HF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3