Histone Deacetylase 7 Silencing Alters Endothelial Cell Migration, a Key Step in Angiogenesis

Author:

Mottet Denis1,Bellahcène Akeila1,Pirotte Sophie1,Waltregny David1,Deroanne Christophe1,Lamour Virginie1,Lidereau Rosette1,Castronovo Vincent1

Affiliation:

1. From the Metastasis Research Laboratory (D.M., A.B., S.P., D.W., V.L., V.C.) and Laboratory of Connective Tissue Biology (C.D.), University of Liège, Belgium; and Laboratory of Oncology (R.L.), INSERM E0017, Centre René Huguenin and Institut National de la Santé et de la Recherche Médicale, U735, St Cloud, France.

Abstract

Global inhibition of class I and II histone deacetylases (HDACs) impairs angiogenesis. Herein, we have undertaken the identification of the specific HDAC(s) with activity that is necessary for the development of blood vessels. Using small interfering RNAs, we observed that HDAC7 silencing in endothelial cells altered their morphology, their migration, and their capacity to form capillary tube-like structures in vitro but did not affect cell adhesion, proliferation, or apoptosis. Among several factors known to be involved in angiogenesis, platelet-derived growth factor-B ( PDGF-B ) and its receptor ( PDGFR -β) were the most upregulated genes following HDAC7 silencing. We demonstrated that their increased expression induced by HDAC7 silencing was partially responsible for the inhibition of endothelial cell migration. In addition, we have also shown that treatment of endothelial cells with phorbol 12-myristate 13-acetate resulted in the exportation of HDAC7 out of the nucleus through a protein kinase C/protein kinase D activation pathway and induced, similarly to HDAC7 silencing, an increase in PDGF-B expression, as well as a partial inhibition of endothelial cell migration. Collectively, these data identified HDAC7 as a key modulator of endothelial cell migration and hence angiogenesis, at least in part, by regulating PDGF-B/PDGFR-β gene expression. Because angiogenesis is required for tumor progression, HDAC7 may represent a rational target for therapeutic intervention against cancer.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3