Enhanced Transmural Fiber Rotation and Connexin 43 Heterogeneity Are Associated With an Increased Upper Limit of Vulnerability in a Transgenic Rabbit Model of Human Hypertrophic Cardiomyopathy

Author:

Ripplinger Crystal M.1,Li Wenwen1,Hadley Jennifer1,Chen Junjie1,Rothenberg Florence1,Lombardi Raffaella1,Wickline Samuel A.1,Marian Ali J.1,Efimov Igor R.1

Affiliation:

1. From the Departments of Biomedical Engineering (C.M.R., W.L., J.H., J.C., S.A.W., I.R.E.) and Medicine (J.C., S.A.W.), Washington University, St Louis, Mo; Department of Internal Medicine (F.R.), University of Cincinnati College of Medicine, Ohio; and Brown Foundation Institute of Molecular Medicine (R.L., A.J.M.), The University of Texas Health Science Center at Houston, Texas Heart Institute at St. Luke’s Episcopal Hospital, Tex.

Abstract

Human hypertrophic cardiomyopathy, characterized by cardiac hypertrophy and myocyte disarray, is the most common cause of sudden cardiac death in the young. Hypertrophic cardiomyopathy is often caused by mutations in sarcomeric genes. We sought to determine arrhythmia propensity and underlying mechanisms contributing to arrhythmia in a transgenic (TG) rabbit model (β-myosin heavy chain–Q403) of human hypertrophic cardiomyopathy. Langendorff-perfused hearts from TG (n=6) and wild-type (WT) rabbits (n=6) were optically mapped. The upper and lower limits of vulnerability, action potential duration (APD) restitution, and conduction velocity were measured. The transmural fiber angle shift was determined using diffusion tensor MRI. The transmural distribution of connexin 43 was quantified with immunohistochemistry. The upper limit of vulnerability was significantly increased in TG versus WT hearts (13.3±2.1 versus 7.4±2.3 V/cm; P =3.2e −5 ), whereas the lower limits of vulnerability were similar. APD restitution, conduction velocities, and anisotropy were also similar. Left ventricular transmural fiber rotation was significantly higher in TG versus WT hearts (95.6±10.9° versus 79.2±7.8°; P =0.039). The connexin 43 density was significantly increased in the mid-myocardium of TG hearts compared with WT (5.46±2.44% versus 2.68±0.77%; P =0.024), and similar densities were observed in the endo- and epicardium. Because a nearly 2-fold increase in upper limit of vulnerability was observed in the TG hearts without significant changes in APD restitution, conduction velocity, or the anisotropy ratio, we conclude that structural remodeling may underlie the elevated upper limit of vulnerability in human hypertrophic cardiomyopathy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3