Extracellular Signal-Regulated Kinase 5 SUMOylation Antagonizes Shear Stress–Induced Antiinflammatory Response and Endothelial Nitric Oxide Synthase Expression in Endothelial Cells

Author:

Woo Chang-Hoon1,Shishido Tetsuro1,McClain Carolyn1,Lim Jae Hyang1,Li Jian-Dong1,Yang Jay1,Yan Chen1,Abe Jun-ichi1

Affiliation:

1. From the Cardiovascular Research Institute (C.-H.W., T.S., C.M., C.Y., J.-i.A.) and Department of Microbiology and Immunology (J.H.L., J.-D.L.), University of Rochester; and Department of Anesthesiology (J.Y.), Columbia University, New York.

Abstract

Shear stress–induced extracellular signal-regulated kinase (ERK)5 activation and the consequent regulation of Kruppel-like factor 2 and endothelial nitric oxide synthase expression represents one of the antiinflammatory and vascular tone regulatory mechanisms maintaining normal endothelial function. Endothelial dysfunction is a major initiator of atherosclerosis, a vascular pathology often associated with diabetes. Small ubiquitin-like modifier (SUMO) covalently attaches to certain residues of specific target transcription factors and could inhibit its activity. We investigated whether H 2 O 2 and AGE (advanced glycation end products), 2 well-known mediators of diabetes, negatively regulated ERK5 transcriptional activity and laminar flow–induced endothelial nitric oxide synthase expression through ERK5 SUMOylation. H 2 O 2 and AGE induced endogenous ERK5 SUMOylation. In addition, ERK5 SUMOylation was increased in the aortas from diabetic mice. ERK5 transcriptional activity, but not kinase activity, was inhibited by expression of Ubc9 (SUMO E2 conjugase) or PIAS1 (E3 ligase), suggesting the involvement of ERK5 SUMOylation on its transcriptional activity. Point-mutation analyses showed that ERK5 is covalently modified by SUMO at 2 conserved sites, Lys6 and Lys22, and that the SUMOylation defective mutant of ERK5, dominant negative form of Ubc9 (DN-Ubc9), and small interfering RNA PIAS1 reversed H 2 O 2 and AGE–mediated reduction of shear stress–mediated ERK5/myocyte enhancer factor 2 transcriptional activity, as well as promoter activity of Kruppel-like factor 2. Finally, PIAS1 knockdown reversed the inhibitory effect of H 2 O 2 in shear stress–induced Kruppel-like factor 2 and endothelial nitric oxide synthase expression. These data clearly defined SUMOylation-dependent ERK5 transcriptional repression independent of kinase activity and suggested this process as among the molecular mechanisms of diabetes-mediated endothelial dysfunction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3