Angiomotin-Like Protein 1 Controls Endothelial Polarity and Junction Stability During Sprouting Angiogenesis

Author:

Zheng Yujuan1,Vertuani Simona1,Nyström Staffan1,Audebert Stéphane1,Meijer Inèz1,Tegnebratt Tetyana1,Borg Jean-Paul1,Uhlén Per1,Majumdar Arindam1,Holmgren Lars1

Affiliation:

1. From the Department of Oncology and Pathology (Y.Z., S.V., S.N., I.M., T.T., L.H.), Cancer Centrum Karolinska; and Laboratory of Molecular Neurobiology (P.U.) and Division of Matrix Biology (A.M.), Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; and Institut National de la Santé et de la Recherche Médicale (S.A., J.-P.B.), U891, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Univ Méditerranée, Marseille, France.

Abstract

Rationale: We have previously shown that angiomotin (Amot) is essential for endothelial cell migration during mouse embryogenesis. However, ≈5% of Amot knockout mice survived without any detectable vascular defects. Angiomotin-like protein 1 (AmotL1) potentially compensates for the absence of Amot as it is 62% homologous to Amot and exhibits similar expression pattern in endothelial cells. Objective: Here, we report the identification of a novel isoform of AmotL1 that controls endothelial cell polarization and directional migration. Methods and Results: Small interfering RNA–mediated silencing of AmotL1 in mouse aortic endothelial cells caused a significant reduction in migration. In confluent mouse pancreatic islet endothelial cells (MS-1), AmotL1 colocalized with Amot to tight junctions. Small interfering RNA knockdown of both Amot and AmotL1 in MS-1 cells exhibited an additive effect on increasing paracellular permeability compared to that of knocking down either Amot or AmotL1, indicating both proteins were required for proper tight junction activity. Moreover, as visualized using high-resolution 2-photon microscopy, the morpholino-mediated knockdown of amotl1 during zebrafish embryogenesis resulted in vascular migratory defect of intersegmental vessels with strikingly decreased junction stability between the stalk cells and the aorta. However, the phenotype was quite distinct from that of amot knockdown which affected polarization of the tip cells of intersegmental vessels. Double knockdown resulted in an additive phenotype of depolarized tip cells with no or decreased connection of the stalk cells to the dorsal aorta. Conclusions: These results cumulatively validate that Amot and AmotL1 have similar effects on endothelial migration and tight junction formation in vitro. However, in vivo Amot appears to control the polarity of vascular tip cells whereas AmotL1 mainly affects the stability of cell–cell junctions of the stalk cells.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3