Extracellular Ribonucleic Acids (RNA) Enter the Stage in Cardiovascular Disease

Author:

Zernecke Alma1,Preissner Klaus T.1

Affiliation:

1. From the Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany (A.Z.); and Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany (K.T.P.).

Abstract

Inflammatory and ischemic cardiovascular diseases, especially atherosclerosis and myocardial infarction, remain the number one cause of death in the Western world, whereas the therapeutic options currently available are still limited. Several recent findings have indicated that nucleic acids, particularly extracellular ribosomal RNA and micro-RNAs, significantly contribute to the adverse outcome of atherosclerosis, myocardial infarction, and other cardiovascular diseases. Extracellular RNAs act as novel danger-associated molecular pattern signals and potent cofactors in cardiovascular inflammation and thrombosis, particularly when accumulating in the extracellular space under tissue-damaging or pathological conditions. In this concise review article, the different entities of extracellular RNAs, their cellular sources, and their putative functional contribution to the pathogenesis of cardiovascular diseases will be discussed. In fact, it remains a tightrope walk for these polyanionic molecules outside cells to promote defense reactions on the one side but to provoke cardiovascular disease development on the other side, dependent on their concentration, the environmental conditions, and the cellular stimuli engaged. Thus, we will discuss the mechanisms and cellular responses by which extracellular RNAs operate between defense and disease. Finally, natural counteracting molecules, such as RNase1, will be focused on to elaborate their protective functions in the context of inflammatory and ischemic cardiovascular diseases with the possibility to apply them as novel interventional strategies.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3