MicroRNA-133 Modulates the β 1 -Adrenergic Receptor Transduction Cascade

Author:

Castaldi Alessandra1,Zaglia Tania1,Di Mauro Vittoria1,Carullo Pierluigi1,Viggiani Giacomo1,Borile Giulia1,Di Stefano Barbara1,Schiattarella Gabriele Giacomo1,Gualazzi Maria Giovanna1,Elia Leonardo1,Stirparo Giuliano Giuseppe1,Colorito Maria Luisa1,Pironti Gianluigi1,Kunderfranco Paolo1,Esposito Giovanni1,Bang Marie-Louise1,Mongillo Marco1,Condorelli Gianluigi1,Catalucci Daniele1

Affiliation:

1. From the Humanitas Clinical and Research Center, Rozzano, Milan, Italy (A.C., V.D.M., P.C., G.V., M.G.G., G.G.S., P.K., M.-L.B., G.C., D.C.); Multimedica, Milan, Italy (L.E.); University of Milan Bicocca, Milan, Italy (A.C.); Venetian Institute of Molecular Medicine, Padova, Italy (T.Z., G.B., M.M.); University of Padova, Padova, Italy (T.Z., G.B., M.M.); Institute of Genetic and Biomedical Research–Milan Unit, Milan, Italy (P.C., M.-L.B., G.C., D.C.); University “Federico II,” Naples, Italy (G.G.S....

Abstract

Rationale : The sympathetic nervous system plays a fundamental role in the regulation of myocardial function. During chronic pressure overload, overactivation of the sympathetic nervous system induces the release of catecholamines, which activate β-adrenergic receptors in cardiomyocytes and lead to increased heart rate and cardiac contractility. However, chronic stimulation of β-adrenergic receptors leads to impaired cardiac function, and β-blockers are widely used as therapeutic agents for the treatment of cardiac disease. MicroRNA-133 (miR-133) is highly expressed in the myocardium and is involved in controlling cardiac function through regulation of messenger RNA translation/stability. Objective : To determine whether miR-133 affects β-adrenergic receptor signaling during progression to heart failure. Methods and Results : Based on bioinformatic analysis, β 1 -adrenergic receptor (β 1 AR) and other components of the β 1 AR signal transduction cascade, including adenylate cyclase VI and the catalytic subunit of the cAMP-dependent protein kinase A, were predicted as direct targets of miR-133 and subsequently validated by experimental studies. Consistently, cAMP accumulation and activation of downstream targets were repressed by miR-133 overexpression in both neonatal and adult cardiomyocytes following selective β 1 AR stimulation. Furthermore, gain-of-function and loss-of-function studies of miR-133 revealed its role in counteracting the deleterious apoptotic effects caused by chronic β 1 AR stimulation. This was confirmed in vivo using a novel cardiac-specific TetON-miR-133 inducible transgenic mouse model. When subjected to transaortic constriction, TetON-miR-133 inducible transgenic mice maintained cardiac performance and showed attenuated apoptosis and reduced fibrosis compared with control mice. Conclusions : miR-133 controls multiple components of the β 1 AR transduction cascade and is cardioprotective during heart failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Reference51 articles.

1. What Is the Role of β-Adrenergic Signaling in Heart Failure?

2. Functional Consequences of Altering Myocardial Adrenergic Receptor Signaling

3. Adrenergic and muscarinic receptors in the human heart.;Brodde OE;Pharmacol Rev,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3