OxLDL Triggers Retrograde Translocation of Arginase2 in Aortic Endothelial Cells via ROCK and Mitochondrial Processing Peptidase

Author:

Pandey Deepesh1,Bhunia Anil1,Oh Young Jun1,Chang Fumin1,Bergman Yehudit1,Kim Jae Hyung1,Serbo Janna1,Boronina Tatiana N.1,Cole Robert N.1,Van Eyk Jennifer1,Remaley Alan T.1,Berkowitz Dan E.1,Romer Lewis H.1

Affiliation:

1. From the Department of Anesthesiology and Critical Care Medicine (D.P., A.B., Y.J.O., F.C., Y.B., J.H.K., J.S., D.E.B., L.H.R.), Biomedical Engineering (J.S., D.E.B., L.H.R.), and Cell Biology, Pediatrics, Center for Cell Dynamics (L.H.R.), Mass Spectrometry and Proteomics Facility (T.N.B., R.N.C.), and Departments of Medicine and Biological Chemistry (J.V.E.), Johns Hopkins University School of Medicine, Baltimore, MD; and Lipoprotein Metabolism Section, Cardiovascular-Pulmonary Branch, National...

Abstract

Rationale : Increased arginase activity contributes to endothelial dysfunction by competition for l -arginine substrate and reciprocal regulation of nitric oxide synthase (NOS). The rapid increase in arginase activity in human aortic endothelial cells exposed to oxidized low-density lipoprotein (OxLDL) is consistent with post-translational modification or subcellular trafficking. Objective : To test the hypotheses that OxLDL triggers reverse translocation of mitochondrial arginase 2 (Arg2) to cytosol and Arg2 activation, and that this process is dependent on mitochondrial processing peptidase, lectin-like OxLDL receptor-1 receptor, and rho kinase. Methods and Results : OxLDL-triggered translocation of Arg2 from mitochondria to cytosol in human aortic endothelial cells and in murine aortic intima with a concomitant rise in arginase activity. All of these changes were abolished by inhibition of mitochondrial processing peptidase or by its siRNA-mediated knockdown. Rho kinase inhibition and the absence of the lectin-like OxLDL receptor-1 in knockout mice also ablated translocation. Aminoterminal sequencing of Arg2 revealed 2 candidate mitochondrial targeting sequences, and deletion of either of these confined Arg2 to the cytoplasm. Inhibitors of mitochondrial processing peptidase or lectin-like OxLDL receptor-1 knockout attenuated OxLDL-mediated decrements in endothelial-specific NO production and increases in superoxide generation. Finally, Arg2 −/− mice bred on an ApoE −/− background showed reduced plaque load, reduced reactive oxygen species production, enhanced NO, and improved endothelial function when compared with ApoE −/− controls. Conclusions : These data demonstrate dual distribution of Arg2, a protein with an unambiguous mitochondrial targeting sequence, in mammalian cells, and its reverse translocation to cytoplasm by alterations in the extracellular milieu. This novel molecular mechanism drives OxLDL-mediated arginase activation, endothelial NOS uncoupling, endothelial dysfunction, and atherogenesis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3