Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes as an In Vitro Model for Coxsackievirus B3–Induced Myocarditis and Antiviral Drug Screening Platform

Author:

Sharma Arun1,Marceau Caleb1,Hamaguchi Ryoko1,Burridge Paul W.1,Rajarajan Kuppusamy1,Churko Jared M.1,Wu Haodi1,Sallam Karim I.1,Matsa Elena1,Sturzu Anthony C.1,Che Yonglu1,Ebert Antje1,Diecke Sebastian1,Liang Ping1,Red-Horse Kristy1,Carette Jan E.1,Wu Sean M.1,Wu Joseph C.1

Affiliation:

1. From the Department of Medicine, Division of Cardiology (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Institute for Stem Cell Biology and Regenerative Medicine (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., S.M.W., J.C.W.), Stanford Cardiovascular Institute (A.S., R.H., P.W.B., K.R., J.M.C., H.W., K.I.S., E.M., A.C.S., Y.C., A.E., S.D., P.L., K.R.-H., S.M.W., J.C.W.), Department of Biology (A.S., R.H.,...

Abstract

Rationale: Viral myocarditis is a life-threatening illness that may lead to heart failure or cardiac arrhythmias. A major causative agent for viral myocarditis is the B3 strain of coxsackievirus, a positive-sense RNA enterovirus. However, human cardiac tissues are difficult to procure in sufficient enough quantities for studying the mechanisms of cardiac-specific viral infection. Objective: This study examined whether human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) could be used to model the pathogenic processes of coxsackievirus-induced viral myocarditis and to screen antiviral therapeutics for efficacy. Methods and Results: hiPSC-CMs were infected with a luciferase-expressing coxsackievirus B3 strain (CVB3-Luc). Brightfield microscopy, immunofluorescence, and calcium imaging were used to characterize virally infected hiPSC-CMs for alterations in cellular morphology and calcium handling. Viral proliferation in hiPSC-CMs was quantified using bioluminescence imaging. Antiviral compounds including interferonβ1, ribavirin, pyrrolidine dithiocarbamate, and fluoxetine were tested for their capacity to abrogate CVB3-Luc proliferation in hiPSC-CMs in vitro. The ability of these compounds to reduce CVB3-Luc proliferation in hiPSC-CMs was consistent with reported drug effects in previous studies. Mechanistic analyses via gene expression profiling of hiPSC-CMs infected with CVB3-Luc revealed an activation of viral RNA and protein clearance pathways after interferonβ1 treatment. Conclusions: This study demonstrates that hiPSC-CMs express the coxsackievirus and adenovirus receptor, are susceptible to coxsackievirus infection, and can be used to predict antiviral drug efficacy. Our results suggest that the hiPSC-CM/CVB3-Luc assay is a sensitive platform that can screen novel antiviral therapeutics for their effectiveness in a high-throughput fashion.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3