Hrd1 and ER-Associated Protein Degradation, ERAD, Are Critical Elements of the Adaptive ER Stress Response in Cardiac Myocytes

Author:

Doroudgar Shirin1,Völkers Mirko1,Thuerauf Donna J.1,Khan Mohsin1,Mohsin Sadia1,Respress Jonathan L.1,Wang Wei1,Gude Natalie1,Müller Oliver J.1,Wehrens Xander H.T.1,Sussman Mark A.1,Glembotski Christopher C.1

Affiliation:

1. From the San Diego State University Heart Institute and the Department of Biology, San Diego State University, CA (S.D., M.V., D.J.T., M.K., S.M., N.G., M.A.S., C.C.G.); Department of Cardiology, University of Heidelberg, Heidelberg, Germany (M.V.); DZKH (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Heidelberg, Germany (M.V.); Department of Internal Medicine III (O.J.M.), University of Heidelberg, Heidelberg, Germany; Center for Translational Medicine, Temple...

Abstract

Rationale: Hydroxymethyl glutaryl-coenzyme A reductase degradation protein 1 (Hrd1) is an endoplasmic reticulum (ER)-transmembrane E3 ubiquitin ligase that has been studied in yeast, where it contributes to ER protein quality control by ER-associated degradation (ERAD) of misfolded proteins that accumulate during ER stress. Neither Hrd1 nor ERAD has been studied in the heart, or in cardiac myocytes, where protein quality control is critical for proper heart function. Objective: The objective of this study were to elucidate roles for Hrd1 in ER stress, ERAD, and viability in cultured cardiac myocytes and in the mouse heart, in vivo. Methods and Results: The effects of small interfering RNA–mediated Hrd1 knockdown were examined in cultured neonatal rat ventricular myocytes. The effects of adeno-associated virus–mediated Hrd1 knockdown and overexpression were examined in the hearts of mice subjected to pressure overload–induced pathological cardiac hypertrophy, which challenges protein-folding capacity. In cardiac myocytes, the ER stressors, thapsigargin and tunicamycin increased ERAD, as well as adaptive ER stress proteins, and minimally affected cell death. However, when Hrd1 was knocked down, thapsigargin and tunicamycin dramatically decreased ERAD, while increasing maladaptive ER stress proteins and cell death. In vivo, Hrd1 knockdown exacerbated cardiac dysfunction and increased apoptosis and cardiac hypertrophy, whereas Hrd1 overexpression preserved cardiac function and decreased apoptosis and attenuated cardiac hypertrophy in the hearts of mice subjected to pressure overload. Conclusions: Hrd1 and ERAD are essential components of the adaptive ER stress response in cardiac myocytes. Hrd1 contributes to preserving heart structure and function in a mouse model of pathological cardiac hypertrophy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3