Homocysteine Inhibits Arterial Endothelial Cell Growth Through Transcriptional Downregulation of Fibroblast Growth Factor-2 Involving G Protein and DNA Methylation

Author:

Chang Po-Yuan1,Lu Shao-Chun1,Lee Chii-Ming1,Chen Yi-Jie1,Dugan Tracey A.1,Huang Wen-Huei1,Chang Shwu-Fen1,Liao Warren S.L.1,Chen Chu-Huang1,Lee Yuan-Teh1

Affiliation:

1. From the Departments of Internal Medicine (P.-Y.C., C.-M.L., Y.-T.L.) and Biochemistry and Molecular Biology (S.-C.L., Y.-J.C., W.-H.H.), National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei; Graduate Institute of Cell and Molecular Biology (S.-F.C.), Taipei Medical University, Taipei; the Department of Biochemistry and Molecular Biology (W.S.L.L.), Program in Genes and Development, University of Texas M.D. Anderson Cancer Center, Houston; and the Department...

Abstract

Homocysteine (Hcy) contributes to atherogenesis and angiostasis by altering the phenotype of arterial endothelial cells (ECs). The present study was aimed at elucidating potential mechanisms by which Hcy can slow EC proliferation and induce EC apoptosis, thereby disrupting endothelial integrity. Given the strong mitogenic and antiapoptotic properties of fibroblast growth factor (FGF)2, we examined whether Hcy can modulate its expression. In cultured human coronary and bovine aortic ECs, Hcy exerted time- and concentration-dependent (0 to 500 μmol/L) reduction of the mRNA and protein levels of FGF2, whereas vascular endothelial growth factor expression was not affected until Hcy reached a proapoptotic 500 μmol/L. By testing a panel of signal transduction inhibitors, we found that the Hcy-induced downregulation of FGF2 was specifically attenuated by pertussis toxin, an inhibitor of Gi protein signaling. Hcy induced cell cycle arrest at the G 1 /S transition and increased TUNEL-positive apoptotic cells in a graded manner. These effects were effectively counteracted by exogenous FGF2. Reporter gene assays showed that Hcy downregulated FGF2 by transcriptional repression of the gene promoter encompassed in a CpG dinucleotide-rich island. This region was heavily methylated at the cytosine residues by Hcy despite decreased methylation potential ( S -adenosylmethionine to S -adenosylhomocysteine ratio). Normal levels of FGF2 transcription were restored to ECs simultaneously exposed to Hcy and 5-aza-deoxycytidine. We conclude that homocysteine disrupts the growth and survival of ECs through a G protein–mediated pathway associated with altered promoter DNA methylation and the transcriptional repression of FGF2.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3