Ion Channel Subunit Expression Changes in Cardiac Purkinje Fibers

Author:

Maguy Ange1,Le Bouter Sabrina1,Comtois Philippe1,Chartier Denis1,Villeneuve Louis1,Wakili Reza1,Nishida Kunihiro1,Nattel Stanley1

Affiliation:

1. From the Department of Medicine (A.M., S.L.B., D.C., L.V., R.W., K.N., S.N.), Department of Physiology (P.C.), and Institute of Biomedical Engineering (P.C.), Montreal Heart Institute and Université de Montréal, Quebec, Canada; Department of Pharmacology and Therapeutics (S.N.), McGill University, Montreal, Quebec, Canada; and Department of Internal Medicine 1 (R.W.), Ludwig-Maximilians University, Munich, Germany.

Abstract

Purkinje fibers (PFs) play key roles in cardiac conduction and arrhythmogenesis. Congestive heart failure (CHF) causes well-characterized atrial and ventricular ion channel subunit expression changes, but effects on PF ion channel subunits are unknown. This study assessed changes in PF ion channel subunit expression (real-time PCR, immunoblot, immunohistochemistry), action potential properties, and conduction in dogs with ventricular tachypacing–induced CHF. CHF downregulated mRNA expression of subunits involved in action potential propagation (Nav1.5, by 56%; connexin [Cx]40, 66%; Cx43, 56%) and repolarization (Kv4.3, 43%, Kv3.4, 46%). No significant changes occurred in KChIP2, KvLQT1, ERG, or Kir3.1/3.4 mRNA. At the protein level, downregulation was seen for Nav1.5 (by 38%), Kv4.3 (42%), Kv3.4 (57%), Kir2.1 (26%), Cx40 (53%), and Cx43 (30%). Cx43 dephosphorylation was indicated by decreased larger molecular mass bands (pan-Cx43 antibody) and a 57% decrease in Ser368-phosphorylated Cx43 (phospho-specific antibody). Immunohistochemistry revealed reduced Cx40, Cx43, and phospho-Cx43 expression at intercalated disks. Action potential changes were consistent with observed decreases in ion channel subunits: CHF decreased phase 1 slope (by 56%), overshoot (by 32%), and phase 0 dV/dt max (by 35%). Impulse propagation was slowed in PF false tendons: conduction velocity decreased significantly from 2.2±0.1 m/s (control) to 1.5±0.1 m/s (CHF). His-Purkinje conduction also slowed in vivo, with HV interval increasing from 35.5±1.2 (control) to 49.3±3.4 ms (CHF). These results indicate important effects of CHF on PF ion channel subunit expression. Alterations in subunits governing conduction properties may be particularly important, because CHF-induced impairments in Purkinje tissue conduction, which this study is the first to describe, could contribute significantly to dyssynchronous ventricular activation, a major determinant of prognosis in CHF-patients.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3