Activation of AMP-Activated Protein Kinase by Metformin Improves Left Ventricular Function and Survival in Heart Failure

Author:

Gundewar Susheel1,Calvert John W.1,Jha Saurabh1,Toedt-Pingel Iris1,Yong Ji Sang1,Nunez Denise1,Ramachandran Arun1,Anaya-Cisneros Mauricio1,Tian Rong1,Lefer David J.1

Affiliation:

1. From the Department of Medicine (S.G., J.W.C., S.J., I.T.-P., S.Y.J., D.N., A.R., M.A.-C., D.J.L.), Division of Cardiology; and Department of Pathology (D.J.L.), Albert Einstein College of Medicine, Bronx, NY; and Nuclear Magnetic Resonance Laboratory for Physiological Chemistry (R.T.), Division of Cardiovascular Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Mass.

Abstract

Clinical studies have reported that the widely used antihyperglycemic drug metformin significantly reduces cardiac risk factors and improves clinical outcomes in patients with heart failure. The mechanisms by which metformin exerts these cardioprotective effects remain unclear and may be independent of antihyperglycemic effects. We tested the hypothesis that chronic activation of AMP-activated protein kinase (AMPK) with low-dose metformin exerts beneficial effects on cardiac function and survival in in vivo murine models of heart failure. Mice were subjected to permanent left coronary artery occlusion or to 60 minutes left coronary artery occlusion followed by reperfusion for 4 weeks. High-resolution, 2D echocardiography was performed at baseline and 4 weeks after myocardial infarction to assess left ventricular dimensions and function. Metformin (125 μg/kg) administered to mice at ischemia and then daily improved survival by 47% ( P <0.05 versus vehicle) at 4 weeks following permanent left coronary artery occlusion. Additionally, metformin given at reperfusion and then daily preserved left ventricular dimensions and left ventricular ejection fraction ( P <0.01 versus vehicle) at 4 weeks. The improvement in cardiac structure and function was associated with increases in AMPK and endothelial nitric oxide synthase (eNOS) phosphorylation, as well as increased peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α expression in cardiac myocytes. Furthermore, metformin significantly improved myocardial cell mitochondrial respiration and ATP synthesis compared to vehicle. The cardioprotective effects of metformin were ablated in mice lacking functional AMPK or eNOS. This study demonstrates that metformin significantly improves left ventricular function and survival via activation of AMPK and its downstream mediators, eNOS and PGC-1α, in a murine model of heart failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3