Protein Kinase A–Mediated Phosphorylation of cMyBP-C Increases Proximity of Myosin Heads to Actin in Resting Myocardium

Author:

Colson Brett A.1,Bekyarova Tanya1,Locher Matthew R.1,Fitzsimons Daniel P.1,Irving Thomas C.1,Moss Richard L.1

Affiliation:

1. From the Department of Physiology (B.A.C., M.R.L., D.P.F., R.L.M.), University of Wisconsin Medical School, Madison, Wis; and CSRRI and the Department of BCPS (T.B., T.C.I.), Illinois Institute of Technology, Chicago, Ill.

Abstract

Protein kinase A–mediated (PKA) phosphorylation of cardiac myosin binding protein C (cMyBP-C) accelerates the kinetics of cross-bridge cycling and may relieve the tether-like constraint of myosin heads imposed by cMyBP-C. We favor a mechanism in which cMyBP-C modulates cross-bridge cycling kinetics by regulating the proximity and interaction of myosin and actin. To test this idea, we used synchrotron low-angle x-ray diffraction to measure interthick filament lattice spacing and the equatorial intensity ratio, I 11 /I 10 , in skinned trabeculae isolated from wild-type and cMyBP-C null (cMyBP-C −/− ) mice. In wild-type myocardium, PKA treatment appeared to result in radial or azimuthal displacement of cross-bridges away from the thick filaments as indicated by an increase (approximately 50%) in I 11 /I 10 (0.22±0.03 versus 0.33±0.03). Conversely, PKA treatment did not affect cross-bridge disposition in mice lacking cMyBP-C, because there was no difference in I 11 /I 10 between untreated and PKA-treated cMyBP-C −/− myocardium (0.40±0.06 versus 0.42±0.05). Although lattice spacing did not change after treatment in wild-type (45.68±0.84 nm versus 45.64±0.64 nm), treatment of cMyBP-C −/− myocardium increased lattice spacing (46.80±0.92 nm versus 49.61±0.59 nm). This result is consistent with the idea that the myofilament lattice expands after PKA phosphorylation of cardiac troponin I, and when present, cMyBP-C, may stabilize the lattice. These data support our hypothesis that tethering of cross-bridges by cMyBP-C is relieved by phosphorylation of PKA sites in cMyBP-C, thereby increasing the proximity of cross-bridges to actin and increasing the probability of interaction with actin on contraction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3