Apelin Gene Transfer Into the Rostral Ventrolateral Medulla Induces Chronic Blood Pressure Elevation in Normotensive Rats

Author:

Zhang Qi1,Yao Fanrong1,Raizada Mohan K.1,O'Rourke Stephen T.1,Sun Chengwen1

Affiliation:

1. From the Department of Pharmaceutical Sciences (Q.Z., F.Y., S.T.O, C.S.), College of Pharmacy, North Dakota State University, Fargo; Department of Physiology and Functional Genomics (M.K.R.), College of Medicine, University of Florida, Gainesville.

Abstract

The peripheral apelin system plays a significant role in cardiovascular homeostasis and in the pathophysiology of cardiovascular diseases. However, the central effect of this neurohormonal system in neural control of cardiovascular function remains poorly understood. Thus, this study was undertaken to evaluate the effect of apelin in the rostral ventrolateral medulla (RVLM) on blood pressure, cardiac function, and sympathetic nerve activity. Apelin mRNA and protein levels were detected with real-time RT-PCR and Western blots, respectively. Expression of apelin was significantly enhanced in the RVLM of spontaneously hypertensive rat (SHR) compared with normotensive Wistar–Kyoto (WKY) rats. To study the functional consequence of upregulated apelin expression, apelin was overexpressed by bilateral microinjection of the AAV2-apelin viral vector into the RVLM of WKY rats. Immunofluorescence staining and Western blots demonstrated that microinjection of AAV2-apelin into the RVLM resulted in a significant increase in apelin expression, which was associated with a chronic elevation in blood pressure and cardiac hypertrophy. In addition, direct microinjection of exogenous apelin-13 (200 pmol in 50 nL) into the RVLM caused a 20 mm Hg elevation in blood pressure and a 24% increase in sympathetic nerve activity. The present study is the first to show that apelin expression is enhanced in the RVLM of SHR versus WKY rats and that overexpression of this gene in the RVLM results in chronic blood pressure elevation and cardiac hypertrophy in normotensive rats. Thus, the apelin system in the RVLM may play a very important role in central blood pressure regulation and in the pathogenesis of hypertension.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3