Synaptojanin-2 Binding Protein Stabilizes the Notch Ligands DLL1 and DLL4 and Inhibits Sprouting Angiogenesis

Author:

Adam M. Gordian1,Berger Caroline1,Feldner Anja1,Yang Wan-Jen1,Wüstehube-Lausch Joycelyn1,Herberich Stefanie E.1,Pinder Marcel1,Gesierich Sabine1,Hammes Hans-Peter1,Augustin Hellmut G.1,Fischer Andreas1

Affiliation:

1. From Division of Vascular Signaling and Cancer (M.G.A., C.B., A.F., W.-J.Y., S.E.H., A.F.) and Division of Vascular Oncology and Metastasis (S.G., H.G.A.), German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany; Division of Vascular Biology and Tumor Angiogenesis (M.G.A., C.B., W.-J.Y., J.W.-L., S.E.H., M.P., H.G.A., A.F.) and Fifth Medical Department (H.-P.H.), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; and BioNTech AG, Mainz, Germany (J.W.-L.).

Abstract

Rationale: The formation of novel blood vessels is initiated by vascular endothelial growth factor. Subsequently, DLL4-Notch signaling controls the selection of tip cells, which guide new sprouts, and trailing stalk cells. Notch signaling in stalk cells is induced by DLL4 on the tip cells. Moreover, DLL4 and DLL1 are expressed in the stalk cell plexus to maintain Notch signaling. Notch loss-of-function causes formation of a hyperdense vascular network with disturbed blood flow. Objective: This study was aimed at identifying novel modifiers of Notch signaling that interact with the intracellular domains of DLL1 and DLL4. Methods and Results: Synaptojanin-2 binding protein (SYNJ2BP, also known as ARIP2) interacted with the PDZ binding motif of DLL1 and DLL4, but not with the Notch ligand Jagged-1. SYNJ2BP was preferentially expressed in stalk cells, enhanced DLL1 and DLL4 protein stability, and promoted Notch signaling in endothelial cells. SYNJ2BP induced expression of the Notch target genes HEY1, lunatic fringe (LFNG), and ephrin-B2, reduced phosphorylation of ERK1/2, and decreased expression of the angiogenic factor vascular endothelial growth factor (VEGF)-C. It inhibited the expression of genes enriched in tip cells, such as angiopoietin-2, ESM1, and Apelin, and impaired tip cell formation. SYNJ2BP inhibited endothelial cell migration, proliferation, and VEGF-induced angiogenesis. This could be rescued by blockade of Notch signaling or application of angiopoietin-2. SYNJ2BP-silenced human endothelial cells formed a functional vascular network in immunocompromised mice with significantly increased vascular density. Conclusions: These data identify SYNJ2BP as a novel inhibitor of tip cell formation, executing its functions predominately by promoting Delta-Notch signaling.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3