MicroRNA-663 Regulates Human Vascular Smooth Muscle Cell Phenotypic Switch and Vascular Neointimal Formation

Author:

Li Pan1,Zhu Ni1,Yi Bing1,Wang Nadan1,Chen Ming1,You Xiaohua1,Zhao Xianxian1,Solomides Charalambos C.1,Qin Yongwen1,Sun Jianxin1

Affiliation:

1. From the Center for Translational Medicine (P.L., N.Z., B.Y., N.W., M.C., J.S.) and Department of Pathology, Anatomy, and Cell Biology (C.C.S.), Thomas Jefferson University, Philadelphia, PA; and Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China (P.L., N.Z., X.Y., X.Z., Y.Q., J.S.).

Abstract

Rationale: Abnormal phenotypic switch of vascular smooth muscle cell (VSMC) is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. MicroRNAs (miRNAs) have emerged as important regulators for VSMC function, and we recently identified miR-663 as critical for controlling human aortic smooth muscle cell proliferation. Objective: To investigate whether miR-663 plays a role in human VSMC phenotypic switch and the development of neointima formation. Methods and Results: By using quantitative reverse-transcription polymerase chain reaction, we found that miR-663 was significantly downregulated in human aortic VSMCs on platelet-derived growth factor treatment, whereas expression was markedly increased during VSMC differentiation. Furthermore, we demonstrated that overexpression of miR-663 increased expression of VSMC differentiation marker genes, such as smooth muscle 22α, smooth muscle α-actin, calponin, and smooth muscle myosin heavy chain, and potently inhibited platelet-derived growth factor–induced VSMC proliferation and migration. We identified the transcription factor JunB and myosin light chain 9 as downstream targets of miR-663 in human VSMCs, because overexpression of miR-663 markedly inhibited expression of JunB and its downstream molecules, such as myosin light chain 9 and matrix metalloproteinase 9. Finally, we showed that adeno-miR-663 markedly suppressed the neointimal lesion formation by ≈50% in mice after vascular injury induced by carotid artery ligation, specifically via decreased JunB expression. Conclusions: These results indicate that miR-663 is a novel modulator of human VSMC phenotypic switch by targeting JunB/myosin light chain 9 expression. These findings suggest that targeting miR-663 or its specific downstream targets in human VSMCs may represent an attractive approach for the treatment of proliferative vascular diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3