Enhanced Efferocytosis of Apoptotic Cardiomyocytes Through Myeloid-Epithelial-Reproductive Tyrosine Kinase Links Acute Inflammation Resolution to Cardiac Repair After Infarction

Author:

Wan Elaine1,Yeap Xin Yi1,Dehn Shirley1,Terry Rachael1,Novak Margaret1,Zhang Shuang1,Iwata Shinichi1,Han Xiaoqiang1,Homma Shunichi1,Drosatos Konstantinos1,Lomasney Jon1,Engman David M.1,Miller Stephen D.1,Vaughan Douglas E.1,Morrow John P.1,Kishore Raj1,Thorp Edward B.1

Affiliation:

1. From the Department of Pathology, Microbiology and Immunology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (X.Y.Y., S.D., R.T., M.N., S.Z., X.H., J.L., D.M.E., S.D.M., D.E.V., R.K., E.B.T.); and Division of Molecular Medicine, Department of Cardiology, Columbia University, New York, NY (E.W., S.I., S.H., K.D., J.P.M.).

Abstract

Rationale: Efficient clearance of apoptotic cells (efferocytosis) is a prerequisite for inflammation resolution and tissue repair. After myocardial infarction, phagocytes are recruited to the heart and promote clearance of dying cardiomyocytes. The molecular mechanisms of efferocytosis of cardiomyocytes and in the myocardium are unknown. The injured heart provides a unique model to examine relationships between efferocytosis and subsequent inflammation resolution, tissue remodeling, and organ function. Objective: We set out to identify mechanisms of dying cardiomyocyte engulfment by phagocytes and, for the first time, to assess the causal significance of disrupting efferocytosis during myocardial infarction. Methods and Results: In contrast to other apoptotic cell receptors, macrophage myeloid-epithelial-reproductive tyrosine kinase was necessary and sufficient for efferocytosis of cardiomyocytes ex vivo. In mice, Mertk was specifically induced in Ly6c LO myocardial phagocytes after experimental coronary occlusion. Mertk deficiency led to an accumulation of apoptotic cardiomyocytes, independently of changes in noncardiomyocytes, and a reduced index of in vivo efferocytosis. Importantly, suppressed efferocytosis preceded increases in myocardial infarct size and led to delayed inflammation resolution and reduced systolic performance. Reduced cardiac function was reproduced in chimeric mice deficient in bone marrow Mertk ; reciprocal transplantation of Mertk +/+ marrow into Mertk −/− mice corrected systolic dysfunction. Interestingly, an inactivated form of myeloid-epithelial-reproductive tyrosine kinase, known as solMER, was identified in infarcted myocardium, implicating a natural mechanism of myeloid-epithelial-reproductive tyrosine kinase inactivation after myocardial infarction. Conclusions: These data collectively and directly link efferocytosis to wound healing in the heart and identify Mertk as a significant link between acute inflammation resolution and organ function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 257 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3