Phase 3 DREAM-HF Trial of Mesenchymal Precursor Cells in Chronic Heart Failure

Author:

Borow Kenneth M.1,Yaroshinsky Alex2,Greenberg Barry34,Perin Emerson C.5

Affiliation:

1. From the Borow Consulting Group, LLC, Bryn Mawr, PA (K.M.B.)

2. Vital Systems, Inc, Rolling Meadows, IL (A.Y.)

3. University of California, San Diego School of Medicine, La Jolla (B.G.)

4. Advanced Heart Failure Treatment Program, Sulpizio Cardiovascular Center, University of California, San Diego Healthcare System, La Jolla (B.G.)

5. Stem Cell Center and Adult Cardiology, Texas Heart Institute, Houston (E.C.P.).

Abstract

Advanced heart failure (HF) is a progressive disease characterized by recurrent hospitalizations and high risk of mortality. Indeed, outcomes in late stages of HF approximate those seen in patients with various aggressive malignancies. Clinical trials assessing beneficial outcomes of new treatments in patients with cancer have used innovative approaches to measure impact on total disease burden or surrogates to assess treatment efficacy. Although most cardiovascular outcomes trials continue to use time-to-first event analyses to assess the primary efficacy end point, such analyses do not adequately reflect the impact of new treatments on the totality of the chronic disease burden. Consequently, patient enrichment and other strategies for ongoing clinical trial design, as well as new statistical methodologies, are important considerations, particularly when studying a population with advanced chronic HF. The DREAM-HF trial (Double-Blind Randomized Assessment of Clinical Events With Allogeneic Mesenchymal Precursor Cells in Advanced Heart Failure) is an ongoing, randomized, sham-controlled phase 3 study of the efficacy and safety of mesenchymal precursor cells as immunotherapy in patients with advanced chronic HF with reduced ejection fraction. Mesenchymal precursor cells have a unique multimodal mechanism of action that is believed to result in polarization of proinflammatory type 1 macrophages in the heart to an anti-inflammatory type 2 macrophage state, inhibition of maladaptive adverse left ventricular remodeling, reversal of cardiac and peripheral endothelial dysfunction, and recovery of deranged vasculature. The objective of DREAM-HF is to confirm earlier phase 2 results and evaluate whether mesenchymal precursor cells will reduce the rate of nonfatal recurrent HF-related major adverse cardiac events while delaying or preventing progression of HF to terminal cardiac events. DREAM-HF is an example of an ongoing contemporary events-driven cardiovascular cell–based immunotherapy study that has utilized the concepts of baseline disease enrichment, prognostic enrichment, and predictive enrichment to improve its efficiency by using accumulating data from within as well as external to the trial. Adaptive enrichment designs and strategies are important components of a rational approach to achieve clinical research objectives in shorter clinical trial timelines and with increased cost-effectiveness without compromising ethical standards or the overall statistical integrity of the study. The DREAM-HF trial also presents an alternative approach to traditional composite time-to-first event primary efficacy end points. Statistical methodologies such as the joint frailty model provide opportunities to expand the scope of events-driven HF with reduced ejection fraction clinical trials to utilize time to recurrent nonfatal HF-related major adverse cardiac events as the primary efficacy end point without compromising the integrity of the statistical analyses for terminal cardiac events. In advanced chronic HF with reduced ejection fraction studies, the joint frailty model is utilized to reflect characteristics of the high-risk patient population with important unmet therapeutic needs. In some cases, use of the joint frailty model may substantially reduce sample size requirements. In addition, using an end point that is acceptable to the Food and Drug Administration and the European Medicines Agency, such as recurrent nonfatal HF-related major adverse cardiac events, enables generation of clinically relevant pharmacoeconomic data while providing comprehensive views of the patient’s overall cardiovascular disease burden. The major goal of this review is to provide lessons learned from the ongoing DREAM-HF trial that relate to biologic plausibility and flexible clinical trial design and are potentially applicable to other development programs of innovative therapies for patients with advanced cardiovascular disease. Clinical Trial Registration: URL: https://www.clinicaltrials.gov . Unique identifier: NCT02032004.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3