Reactive Oxygen-Forming Nox5 Links Vascular Smooth Muscle Cell Phenotypic Switching and Extracellular Vesicle-Mediated Vascular Calcification

Author:

Furmanik Malgorzata1,Chatrou Martijn1,van Gorp Rick1,Akbulut Asim1,Willems Brecht1,Schmidt Harald1,van Eys Guillaume1,Bochaton-Piallat Marie-Luce1,Proudfoot Diane1,Biessen Erik1,Hedin Ulf1,Perisic Ljubica1,Mees Barend1,Shanahan Catherine1,Reutelingsperger Chris1,Schurgers Leon1ORCID

Affiliation:

1. From the Biochemistry (M.F., M.C., R.v.G., A.A., B.W., G.v.E., C.R., L.S.) and Pathology (E.B.), Cardiovascular Research Institute Maastricht, Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Sciences (H.S.), Maastricht University, The Netherlands; Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland (M.-L.B.-P.); Signalling Programme, Babraham Institute, Cambridge, United Kingdom (D.P.); Molecular Medicine and Surgery, Vascular Surgery...

Abstract

Rationale: Vascular calcification, the formation of calcium phosphate crystals in the vessel wall, is mediated by vascular smooth muscle cells (VSMCs). However, the underlying molecular mechanisms remain elusive, precluding mechanism-based therapies. Objective: Phenotypic switching denotes a loss of contractile proteins and an increase in migration and proliferation, whereby VSMCs are termed synthetic. We examined how VSMC phenotypic switching influences vascular calcification and the possible role of the uniquely calcium-dependent reactive oxygen species (ROS)-forming Nox5 (NADPH oxidase 5). Methods and Results: In vitro cultures of synthetic VSMCs showed decreased expression of contractile markers CNN-1 (calponin 1), α-SMA (α-smooth muscle actin), and SM22-α (smooth muscle protein 22α) and an increase in synthetic marker S100A4 (S100 calcium binding protein A4) compared with contractile VSMCs. This was associated with increased calcification of synthetic cells in response to high extracellular Ca 2+ . Phenotypic switching was accompanied by increased levels of ROS and Ca 2+ -dependent Nox5 in synthetic VSMCs. Nox5 itself regulated VSMC phenotype as siRNA knockdown of Nox5 increased contractile marker expression and decreased calcification, while overexpression of Nox5 decreased contractile marker expression. ROS production in synthetic VSMCs was cytosolic Ca 2+ -dependent, in line with it being mediated by Nox5. Treatment of VSMCs with Ca 2+ loaded extracellular vesicles (EVs) lead to an increase in cytosolic Ca 2+ . Inhibiting EV endocytosis with dynasore blocked the increase in cytosolic Ca 2+ and VSMC calcification. Increased ROS production resulted in increased EV release and decreased phagocytosis by VSMCs. Conclusions: We show here that contractile VSMCs are resistant to calcification and identify Nox5 as a key regulator of VSMC phenotypic switching. Additionally, we describe a new mechanism of Ca 2+ uptake via EVs and show that Ca 2+ induces ROS production in VSMCs via Nox5. ROS production is required for release of EVs, which promote calcification. Identifying molecular pathways that control Nox5 and VSMC-derived EVs provides potential targets to modulate vascular remodeling and calcification in the context of mineral imbalance. Graphic Abstract: A graphic abstract is available for this article.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

EC | Horizon 2020 Framework Programme

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3