Identification of Celastramycin as a Novel Therapeutic Agent for Pulmonary Arterial Hypertension

Author:

Kurosawa Ryo12,Satoh Kimio1,Kikuchi Nobuhiro1,Kikuchi Haruhisa3,Saigusa Daisuke45,Al-Mamun Md. Elias1,Siddique Mohammad A.H.1,Omura Junichi1,Satoh Taijyu1,Sunamura Shinichiro1,Nogi Masamichi1,Numano Kazuhiko1,Miyata Satoshi1,Uruno Akira45,Kano Kuniyuki3,Matsumoto Yotaro3,Doi Takayuki3,Aoki Junken3,Oshima Yoshiteru3,Yamamoto Masayuki45,Shimokawa Hiroaki1

Affiliation:

1. From the Department of Cardiovascular Medicine (R.K., K.S., N.K., E.A.M., M.A.H.S., J.O., T.S., S.S., M.N., K.N., S.M., H.S.), Sendai, Japan

2. Japan Society for the Promotion of Science, Tokyo, Japan (R.K.)

3. Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan (H.K., K.K., Y.M., T.D., J.A., Y.O.).

4. Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organizaition (D.S., A.U., M.Y.), Sendai, Japan

5. Department of Medical Biochemistry, Tohoku University Graduate School of Medicine (D.S., A.U., M.Y.), Sendai, Japan

Abstract

Rationale: Pulmonary arterial hypertension (PAH) is characterized by enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs) accompanying increased production of inflammatory factors and adaptation of the mitochondrial metabolism to a hyperproliferative state. However, all the drugs in clinical use target pulmonary vascular dilatation, which may not be effective for patients with advanced PAH. Objective: We aimed to discover a novel drug for PAH that inhibits PASMC proliferation. Methods and Results: We screened 5562 compounds from original library using high-throughput screening system to discover compounds which inhibit proliferation of PASMCs from patients with PAH (PAH-PASMCs). We found that celastramycin, a benzoyl pyrrole–type compound originally found in a bacteria extract, inhibited the proliferation of PAH-PASMCs in a dose-dependent manner with relatively small effects on PASMCs from healthy donors. Then, we made 25 analogs of celastramycin and selected the lead compound, which significantly inhibited cell proliferation of PAH-PASMCs and reduced cytosolic reactive oxygen species levels. Mechanistic analysis demonstrated that celastramycin reduced the protein levels of HIF-1α (hypoxia-inducible factor 1α), which impairs aerobic metabolism, and κB (nuclear factor-κB), which induces proinflammatory signals, in PAH-PASMCs, leading to reduced secretion of inflammatory cytokine. Importantly, celastramycin treatment reduced reactive oxygen species levels in PAH-PASMCs with increased protein levels of Nrf2 (nuclear factor erythroid 2-related factor 2), a master regulator of cellular response against oxidative stress. Furthermore, celastramycin treatment improved mitochondrial energy metabolism with recovered mitochondrial network formation in PAH-PASMCs. Moreover, these celastramycin-mediated effects were regulated by ZFC3H1 (zinc finger C3H1 domain-containing protein), a binding partner of celastramycin. Finally, celastramycin treatment ameliorated pulmonary hypertension in 3 experimental animal models, accompanied by reduced inflammatory changes in the lungs. Conclusions: These results indicate that celastramycin ameliorates pulmonary hypertension, reducing excessive proliferation of PAH-PASMCs with less inflammation and reactive oxygen species levels, and recovered mitochondrial energy metabolism. Thus, celastramycin is a novel drug for PAH that targets antiproliferative effects on PAH-PASMCs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3