Role of the GLUT1 Glucose Transporter in Postnatal CNS Angiogenesis and Blood-Brain Barrier Integrity

Author:

Veys Koen12,Fan Zheng3,Ghobrial Moheb34,Bouché Ann12,García-Caballero Melissa12,Vriens Kim56,Conchinha Nadine Vasconcelos12,Seuwen Aline78,Schlegel Felix78,Gorski Tatiane3,Crabbé Melissa910,Gilardoni Paola3,Ardicoglu Raphaela3,Schaffenrath Johanna1112,Casteels Cindy910,De Smet Gino13,Smolders Ilse13,Van Laere Koen910,Abel E. Dale31415,Fendt Sarah-Maria56,Schroeter Aileen78,Kalucka Joanna1216,Cantelmo Anna Rita1217,Wälchli Thomas4181920,Keller Annika1112,Carmeliet Peter12,De Bock Katrien3ORCID

Affiliation:

1. From the Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology (K. Veys, A.B., M.G.-C., N.V.C., J.K., A.R.C., P.C.), KU Leuven

2. Laboratory of Angiogenesis and Vascular Metabolism (K. Veys, A.B., M.G.-C., N.V.C., J.K., A.R.C., P.C.), Center for Cancer Biology, VIB, Leuven

3. Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETHZ) Zurich (Z.F., M.G., T.G., P.G., R.A., K.D.B.)

4. Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, University of Zurich (UZH) and ETHZ and Division of Neurosurgery, USZ, Zurich (M.G., T.W.)

5. Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology (K. Vriens, S.-M.F.), KU Leuven

6. Laboratory of Cellular Metabolism and Metabolic Regulation (K. Vriens, S.-M.F.), Center for Cancer Biology, VIB, Leuven

7. Institute for Biomedical Engineering (A. Seuwen, F.S., A. Schroeter), UZH/ETHZ, Zurich, Switzerland

8. Institute of Pharmacology and Toxicology, UZH, Zurich, Switzerland (A. Seuwen, F.S., A. Schroeter)

9. Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, University Hospitals Leuven, Belgium (M.C., C.C., K.V.L.)

10. Molecular Small Animal Imaging Centre, KU Leuven (M.C., C.C., K.V.L.)

11. Neuroscience Center Zurich (J.S., A.K.), UZH/ETHZ, Zurich, Switzerland

12. Department of Neurosurgery, Clinical Neurocentre, USZ, Zurich (J.S., A.K.)

13. Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences, Vrije Universiteit Brussel (G.D.S., I.S.)

14. Fraternal Order of Eagles Diabetes Research Center (E.D.A.), University of Iowa

15. Division of Endocrinology and Metabolism, Carver College of Medicine (E.D.A.), University of Iowa

16. Aarhus Institute of advanced studies (AIAS) and Department of Biomedicine, Aarhus University (J.K.)

17. Université de Lille, INSERM U1003, Physiologie Cellulaire, France (A.R.C.)

18. Group of Brain Vasculature and Neurovascular Unit, Department of Clinical Neurosciences, University Hospital Geneva (T.W.)

19. Department of Fundamental Neurobiology, Krembil Research Institute (T.W.), Toronto Western Hospital, University Health Network, University of Toronto.

20. Division of Neurosurgery, Department of Surgery (T.W.), Toronto Western Hospital, University Health Network, University of Toronto.

Abstract

Rationale: Endothelial cells (ECs) are highly glycolytic and generate the majority of their energy via the breakdown of glucose to lactate. At the same time, a main role of ECs is to allow the transport of glucose to the surrounding tissues. GLUT1 (glucose transporter isoform 1/ Slc2a1 ) is highly expressed in ECs of the central nervous system (CNS) and is often implicated in blood-brain barrier (BBB) dysfunction, but whether and how GLUT1 controls EC metabolism and function is poorly understood. Objective: We evaluated the role of GLUT1 in endothelial metabolism and function during postnatal CNS development as well as at the adult BBB. Methods and Results: Inhibition of GLUT1 decreases EC glucose uptake and glycolysis, leading to energy depletion and the activation of the cellular energy sensor AMPK (AMP-activated protein kinase), and decreases EC proliferation without affecting migration. Deletion of GLUT1 from the developing postnatal retinal endothelium reduces retinal EC proliferation and lowers vascular outgrowth, without affecting the number of tip cells. In contrast, in the brain, we observed a lower number of tip cells in addition to reduced brain EC proliferation, indicating that within the CNS, organotypic differences in EC metabolism exist. Interestingly, when ECs become quiescent, endothelial glycolysis is repressed, and GLUT1 expression increases in a Notch-dependent fashion. GLUT1 deletion from quiescent adult ECs leads to severe seizures, accompanied by neuronal loss and CNS inflammation. Strikingly, this does not coincide with BBB leakiness, altered expression of genes crucial for BBB barrier functioning nor reduced vascular function. Instead, we found a selective activation of inflammatory and extracellular matrix related gene sets. Conclusions: GLUT1 is the main glucose transporter in ECs and becomes uncoupled from glycolysis during quiescence in a Notch-dependent manner. It is crucial for developmental CNS angiogenesis and adult CNS homeostasis but does not affect BBB barrier function.

Funder

Fonds Wetenschappelijk Onderzoek

Stichting Tegen Kanker

EC | European Research Council

Krebsforschung Schweiz

Jubiläumsstiftung der Schweizerischen Lebensversicherungs- und Rentenanstalt für Volksgesundheit und medizinische Forschung

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3