Depletion of Vasohibin 1 Speeds Contraction and Relaxation in Failing Human Cardiomyocytes

Author:

Chen Christina Yingxian1,Salomon Alexander K.1,Caporizzo Matthew A.1,Curry Sam1,Kelly Neil A.1,Bedi Kenneth2,Bogush Alexey I.1,Krämer Elisabeth34,Schlossarek Saskia34,Janiak Philip5,Moutin Marie-Jo67,Carrier Lucie34,Margulies Kenneth B.128,Prosser Benjamin L.18ORCID

Affiliation:

1. From the Department of Physiology, Pennsylvania Muscle Institute (C.Y.C., A.K.S., M.A.C., S.C., N.A.K., A.I.B., K.B.M., B.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia

2. Department of Medicine (K.B., K.B.M.), University of Pennsylvania Perelman School of Medicine, Philadelphia

3. Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (E.K., S.S., L.C.)

4. DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (E.K., S.S., L.C.)

5. Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France (P.J.)

6. Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, F-38000 Grenoble, France (M.-J.M.)

7. Inserm, U1216, F-38000 Grenoble, France (M.-J.M.).

8. Penn Cardiovascular Institute (K.B.M., B.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia

Abstract

Rationale: Impaired myocardial relaxation is an intractable feature of several heart failure (HF) causes. In human HF, detyrosinated microtubules stiffen cardiomyocytes and impair relaxation. Yet the identity of detyrosinating enzymes have remained ambiguous, hindering mechanistic study and therapeutic development. Objective: We aimed to determine if the recently identified complex of VASH1/2 (vasohibin 1/2) and SVBP (small vasohibin binding protein) is an active detyrosinase in cardiomyocytes and if genetic inhibition of VASH-SVBP is sufficient to lower stiffness and improve contractility in HF. Methods and Results: Transcriptional profiling revealed that VASH1 transcript is >10-fold more abundant than VASH2 in human hearts. Using short hairpin RNAs (shRNAs) against VASH1 , VASH2 , and SVBP , we showed that both VASH1- and VASH2-SVBP complexes function as tubulin carboxypeptidases in cardiomyocytes, with a predominant role for VASH1. We also generated a catalytically dead version of the tyrosinating enzyme TTL (TTL-E331Q) to separate the microtubule depolymerizing effects of TTL from its enzymatic activity. Assays of microtubule stability revealed that both TTL and TTL-E331Q depolymerize microtubules, while VASH1 and SVBP depletion reduce detyrosination independent of depolymerization. We next probed effects on human cardiomyocyte contractility. Contractile kinetics were slowed in HF, with dramatically slowed relaxation in cardiomyocytes from patients with HF with preserved ejection fraction. Knockdown of VASH1 conferred subtle kinetic improvements in nonfailing cardiomyocytes, while markedly improving kinetics in failing cardiomyocytes. Further, TTL, but not TTL-E331Q, robustly sped relaxation. Simultaneous measurements of calcium transients and contractility demonstrated that VASH1 depletion speeds kinetics independent from alterations to calcium cycling. Finally, atomic force microscopy confirmed that VASH1 depletion reduces the stiffness of failing human cardiomyocytes. Conclusions: VASH-SVBP complexes are active tubulin carboxypeptidases in cardiomyocytes. Inhibition of VASH1 or activation of TTL is sufficient to lower stiffness and speed relaxation in cardiomyocytes from patients with HF, supporting further pursuit of detyrosination as a therapeutic target for diastolic dysfunction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3