Monitoring Cell-Type–Specific Gene Expression Using Ribosome Profiling In Vivo During Cardiac Hemodynamic Stress

Author:

Doroudgar Shirin12,Hofmann Christoph12,Boileau Etienne123,Malone Brandon123,Riechert Eva12,Gorska Agnieszka A.12,Jakobi Tobias123,Sandmann Clara12,Jürgensen Lonny12,Kmietczyk Vivien12,Malovrh Ellen12,Burghaus Jana12,Rettel Mandy4,Stein Frank4,Younesi Fereshteh12,Friedrich Ulrike A.5,Mauz Victoria26,Backs Johannes26,Kramer Günter5,Katus Hugo A.12,Dieterich Christoph123,Völkers Mirko12

Affiliation:

1. From the Department of Cardiology, Angiology, and Pneumology, Internal Medicine III, Heidelberg University Hospital (S.D., C.H., E.B., B.M., E.R., A.A.G., T.J., C.S., L.J., V.K., E.M., J. Burghaus, F.Y., H.A.K., C.D., M.V.)

2. DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (S.D., C.H., E.B., B.M., E.R., A.A.G., T.J., C.S., L.J., V.K., E.M., J. Burghaus, F.Y., V.M., J. Backs, H.A.K., C.D., M.V.)

3. Section of Bioinformatics and Systems Cardiology and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Germany (E.B., B.M., T.J., C.D.)

4. Proteomics Core Facility, EMBL Heidelberg, Germany (M.R., F.S.)

5. Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Germany (G.K., U.A.F.).

6. Institute of Experimental Cardiology, Heidelberg, Germany (V.M., J. Backs)

Abstract

Rationale: Gene expression profiles have been mainly determined by analysis of transcript abundance. However, these analyses cannot capture posttranscriptional gene expression control at the level of translation, which is a key step in the regulation of gene expression, as evidenced by the fact that transcript levels often poorly correlate with protein levels. Furthermore, genome-wide transcript profiling of distinct cell types is challenging due to the fact that lysates from tissues always represent a mixture of cells. Objectives: This study aimed to develop a new experimental method that overcomes both limitations and to apply this method to perform a genome-wide analysis of gene expression on the translational level in response to pressure overload. Methods and Results: By combining ribosome profiling (Ribo-seq) with a ribosome-tagging approach (Ribo-tag), it was possible to determine the translated transcriptome in specific cell types from the heart. After pressure overload, we monitored the cardiac myocyte translatome by purifying tagged cardiac myocyte ribosomes from cardiac lysates and subjecting the ribosome-protected mRNA fragments to deep sequencing. We identified subsets of mRNAs that are regulated at the translational level and found that translational control determines early changes in gene expression in response to cardiac stress in cardiac myocytes. Translationally controlled transcripts are associated with specific biological processes related to translation, protein quality control, and metabolism. Mechanistically, Ribo-seq allowed for the identification of upstream open reading frames in transcripts, which we predict to be important regulators of translation. Conclusions: This method has the potential to (1) provide a new tool for studying cell-specific gene expression at the level of translation in tissues, (2) reveal new therapeutic targets to prevent cellular remodeling, and (3) trigger follow-up studies that address both, the molecular mechanisms involved in the posttranscriptional control of gene expression in cardiac cells, and the protective functions of proteins expressed in response to cellular stress.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3