MicroRNA-33 Controls Adaptive Fibrotic Response in the Remodeling Heart by Preserving Lipid Raft Cholesterol

Author:

Nishiga Masataka1,Horie Takahiro1,Kuwabara Yasuhide1,Nagao Kazuya1,Baba Osamu1,Nakao Tetsushi1,Nishino Tomohiro1,Hakuno Daihiko1,Nakashima Yasuhiro1,Nishi Hitoo1,Nakazeki Fumiko1,Ide Yuya1,Koyama Satoshi1,Kimura Masahiro1,Hanada Ritsuko1,Nakamura Tomoyuki1,Inada Tsukasa1,Hasegawa Koji1,Conway Simon J.1,Kita Toru1,Kimura Takeshi1,Ono Koh1

Affiliation:

1. From the Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Japan (M.N., T.H., Y.K., O.B., T.Nakao, T.Nishino, D.H., Y.N., H.N., F.N., Y.I., S.K., M.K., R.H., T.Kimura, K.O.); Department of Cardiovascular Center, Osaka Red Cross Hospital, Japan (K.N., T.I.); Department of Pharmacology, Kansai Medical University, Hirakata, Osaka, Japan (T.Nakamura); Division of Translational Research, Clinical Research Institute, National Hospital Organization Kyoto Medical Center,...

Abstract

Rationale: Heart failure and atherosclerosis share the underlying mechanisms of chronic inflammation followed by fibrosis. A highly conserved microRNA (miR), miR-33, is considered as a potential therapeutic target for atherosclerosis because it regulates lipid metabolism and inflammation. However, the role of miR-33 in heart failure remains to be elucidated. Objective: To clarify the role of miR-33 involved in heart failure. Methods and Results: We first investigated the expression levels of miR-33a/b in human cardiac tissue samples with dilated cardiomyopathy. Increased expression of miR-33a was associated with improving hemodynamic parameters. To clarify the role of miR-33 in remodeling hearts, we investigated the responses to pressure overload by transverse aortic constriction in miR-33–deficient (knockout [KO]) mice. When mice were subjected to transverse aortic constriction, miR-33 expression levels were significantly upregulated in wild-type left ventricles. There was no difference in hypertrophic responses between wild-type and miR-33KO hearts, whereas cardiac fibrosis was ameliorated in miR-33KO hearts compared with wild-type hearts. Despite the ameliorated cardiac fibrosis, miR-33KO mice showed impaired systolic function after transverse aortic constriction. We also found that cardiac fibroblasts were mainly responsible for miR-33 expression in the heart. Deficiency of miR-33 impaired cardiac fibroblast proliferation, which was considered to be caused by altered lipid raft cholesterol content. Moreover, cardiac fibroblast–specific miR-33–deficient mice also showed decreased cardiac fibrosis induced by transverse aortic constriction as systemic miR-33KO mice. Conclusion: Our results demonstrate that miR-33 is involved in cardiac remodeling, and it preserves lipid raft cholesterol content in fibroblasts and maintains adaptive fibrotic responses in the remodeling heart.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3