Osteoglycin Prevents Cardiac Dilatation and Dysfunction After Myocardial Infarction Through Infarct Collagen Strengthening

Author:

Van Aelst Lucas N.L.1,Voss Sandra1,Carai Paolo1,Van Leeuwen Rick1,Vanhoutte Davy1,Sanders-van Wijk Sandra1,Eurlings Luc1,Swinnen Melissa1,Verheyen Fons K.1,Verbeken Eric1,Nef Holger1,Troidl Christian1,Cook Stuart A.1,Brunner-La Rocca Hans-Peter1,Möllmann Helge1,Papageorgiou Anna-Pia1,Heymans Stephane1

Affiliation:

1. From the Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Catholic University of Leuven, Leuven, Belgium (L.N.L.V.A., P.C., A.-P.P., S.H.); Department of Cardiology (L.N.L.V.A., M.S.) and Department of Pathology (E.V.), University Hospitals Leuven, Leuven, Belgium; Department of Cardiology, Kerckhoff Heart Center, Bad Nauheim, Germany (S.V., H.N., C.T., H.M.); Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), University Hospital...

Abstract

Rationale: To maintain cardiac mechanical and structural integrity after an ischemic insult, profound alterations occur within the extracellular matrix. Osteoglycin is a small leucine-rich proteoglycan previously described as a marker of cardiac hypertrophy. Objective: To establish whether osteoglycin may play a role in cardiac integrity and function after myocardial infarction (MI). Methods and Results: Osteoglycin expression is associated with collagen deposition and scar formation in mouse and human MI. Absence of osteoglycin in mice resulted in significantly increased rupture-related mortality with tissue disruption, intramyocardial bleeding, and increased cardiac dysfunction, despite equal infarct sizes. Surviving osteoglycin null mice had greater infarct expansion in comparison with wild-type mice because of impaired collagen fibrillogenesis and maturation in the infarcts as revealed by electron microscopy and collagen polarization. Absence of osteoglycin did not affect cardiomyocyte hypertrophy in the remodeling remote myocardium. In cultured fibroblasts, osteoglycin knockdown or supplementation did not alter transforming growth factor-β signaling. Adenoviral overexpression of osteoglycin in wild-type mice significantly improved collagen quality, thereby blunting cardiac dilatation and dysfunction after MI. In osteoglycin null mice, adenoviral overexpression of osteoglycin was unable to prevent rupture-related mortality because of insufficiently restoring osteoglycin protein levels in the heart. Finally, circulating osteoglycin levels in patients with heart failure were significantly increased in the patients with a previous history of MI compared with those with nonischemic heart failure and correlated with survival, left ventricular volumes, and other markers of fibrosis. Conclusions: Increased osteoglycin expression in the infarct scar promotes proper collagen maturation and protects against cardiac disruption and adverse remodeling after MI. In human heart failure, osteoglycin is a promising biomarker for ischemic heart failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3