Angiogenic Mechanisms of Human CD34 + Stem Cell Exosomes in the Repair of Ischemic Hindlimb

Author:

Mathiyalagan Prabhu1,Liang Yaxuan1,Kim David1,Misener Sol1,Thorne Tina1,Kamide Christine E.1,Klyachko Ekaterina1,Losordo Douglas W.1,Hajjar Roger J.1,Sahoo Susmita1

Affiliation:

1. From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.M., Y.L., D.K., R.J.H., S.S.); Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL (D.K., S.M., T.T., C.E.K., E.K., D.W.L., S.S.); and Caladrius Biosciences, New York (D.W.L.).

Abstract

Rationale: Paracrine secretions seem to mediate therapeutic effects of human CD34 + stem cells locally transplanted in patients with myocardial and critical limb ischemia and in animal models. Earlier, we had discovered that paracrine secretion from human CD34 + cells contains proangiogenic, membrane-bound nanovesicles called exosomes (CD34Exo). Objective: Here, we investigated the mechanisms of CD34Exo-mediated ischemic tissue repair and therapeutic angiogenesis by studying their miRNA content and uptake. Methods and Results: When injected into mouse ischemic hindlimb tissue, CD34Exo, but not the CD34Exo-depleted conditioned media, mimicked the beneficial activity of their parent cells by improving ischemic limb perfusion, capillary density, motor function, and their amputation. CD34Exo were found to be enriched with proangiogenic miRNAs such as miR-126-3p. Knocking down miR-126-3p from CD34Exo abolished their angiogenic activity and beneficial function both in vitro and in vivo. Interestingly, injection of CD34Exo increased miR-126-3p levels in mouse ischemic limb but did not affect the endogenous synthesis of miR-126-3p, suggesting a direct transfer of stable and functional exosomal miR-126-3p. miR-126-3p enhanced angiogenesis by suppressing the expression of its known target, SPRED1 , simultaneously modulating the expression of genes involved in angiogenic pathways such as VEGF (vascular endothelial growth factor), ANG1 (angiopoietin 1), ANG2 (angiopoietin 2), MMP9 (matrix metallopeptidase 9), TSP1 (thrombospondin 1), etc. Interestingly, CD34Exo, when treated to ischemic hindlimbs, were most efficiently internalized by endothelial cells relative to smooth muscle cells and fibroblasts, demonstrating a direct role of stem cell–derived exosomes on mouse endothelium at the cellular level. Conclusions: Collectively, our results have demonstrated a novel mechanism by which cell-free CD34Exo mediates ischemic tissue repair via beneficial angiogenesis. Exosome-shuttled proangiogenic miRNAs may signify amplification of stem cell function and may explain the angiogenic and therapeutic benefits associated with CD34 + stem cell therapy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3