Increased Arterial Blood Pressure and Vascular Remodeling in Mice Lacking Salt-Inducible Kinase 1 (SIK1)

Author:

Bertorello Alejandro M.1,Pires Nuno1,Igreja Bruno1,Pinho Maria João1,Vorkapic Emina1,Wågsäter Dick1,Wikström Johannes1,Behrendt Margareta1,Hamsten Anders1,Eriksson Per1,Soares-da-Silva Patricio1,Brion Laura1

Affiliation:

1. From the Department of Medicine, Membrane Signaling Networks, Karolinska Institutet, Stockholm, Sweden (A.M.B., L.B.); Department of Research and Development, Bial-Portela & Cª, S.A., S. Mamede do Coronado, Portugal (N.P., B.I., P.S.-d.-S.); MedInUP-Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal (M.J.P., P.S.-d.-S.); Department of Medicine, Cardiovascular Genetics and Genomics, Karolinska Institutet, Stockholm, Sweden (E.V., D.W., A.H., P.E.); Division...

Abstract

Rationale: In human genetic studies a single nucleotide polymorphism within the salt-inducible kinase 1 ( SIK1 ) gene was associated with hypertension. Lower SIK1 activity in vascular smooth muscle cells (VSMCs) leads to decreased sodium-potassium ATPase activity, which associates with increased vascular tone. Also, SIK1 participates in a negative feedback mechanism on the transforming growth factor-β1 signaling and downregulation of SIK1 induces the expression of extracellular matrix remodeling genes. Objective: To evaluate whether reduced expression/activity of SIK1 alone or in combination with elevated salt intake could modify the structure and function of the vasculature, leading to higher blood pressure. Methods and Results: SIK1 knockout ( sik1 −/− ) and wild-type ( sik1 +/+ ) mice were challenged to a normal- or chronic high-salt intake (1% NaCl). Under normal-salt conditions, the sik1 −/− mice showed increased collagen deposition in the aorta but similar blood pressure compared with the sik1 +/+ mice. During high-salt intake, the sik1 +/+ mice exhibited an increase in SIK1 expression in the VSMCs layer of the aorta, whereas the sik1 −/− mice exhibited upregulated transforming growth factor-β1 signaling and increased expression of endothelin-1 and genes involved in VSMC contraction, higher systolic blood pressure, and signs of cardiac hypertrophy. In vitro knockdown of SIK1 induced upregulation of collagen in aortic adventitial fibroblasts and enhanced the expression of contractile markers and of endothelin-1 in VSMCs. Conclusions: Vascular SIK1 activation might represent a novel mechanism involved in the prevention of high blood pressure development triggered by high-salt intake through the modulation of the contractile phenotype of VSMCs via transforming growth factor-β1-signaling inhibition.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3