TWIST1 Integrates Endothelial Responses to Flow in Vascular Dysfunction and Atherosclerosis

Author:

Mahmoud Marwa M.1,Kim Hyejeong Rosemary1,Xing Rouyu1,Hsiao Sarah1,Mammoto Akiko1,Chen Jing1,Serbanovic-Canic Jovana1,Feng Shuang1,Bowden Neil P.1,Maguire Richard1,Ariaans Markus1,Francis Sheila E.1,Weinberg Peter D.1,van der Heiden Kim1,Jones Elizabeth A.1,Chico Timothy J.A.1,Ridger Victoria1,Evans Paul C.1

Affiliation:

1. From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children’s Hospital, Harvard Medical School, MA; Department of...

Abstract

Rationale: Blood flow–induced shear stress controls endothelial cell (EC) physiology during atherosclerosis via transcriptional mechanisms that are incompletely understood. The mechanosensitive transcription factor TWIST is expressed during embryogenesis, but its role in EC responses to shear stress and focal atherosclerosis is unknown. Objective: To investigate whether TWIST regulates endothelial responses to shear stress during vascular dysfunction and atherosclerosis and compare TWIST function in vascular development and disease. Methods and Results: The expression and function of TWIST1 was studied in EC in both developing vasculature and during the initiation of atherosclerosis. In zebrafish, twist was expressed in early embryonic vasculature where it promoted angiogenesis by inducing EC proliferation and migration. In adult porcine and murine arteries, TWIST1 was expressed preferentially at low shear stress regions as evidenced by quantitative polymerase chain reaction and en face staining. Moreover, studies of experimental murine carotid arteries and cultured EC revealed that TWIST1 was induced by low shear stress via a GATA4-dependent transcriptional mechanism. Gene silencing in cultured EC and EC-specific genetic deletion in mice demonstrated that TWIST1 promoted atherosclerosis by inducing inflammation and enhancing EC proliferation associated with vascular leakiness. Conclusions: TWIST expression promotes developmental angiogenesis by inducing EC proliferation and migration. In addition to its role in development, TWIST is expressed preferentially at low shear stress regions of adult arteries where it promotes atherosclerosis by inducing EC proliferation and inflammation. Thus, pleiotropic functions of TWIST control vascular disease and development.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3