SPEG (Striated Muscle Preferentially Expressed Protein Kinase) Is Essential for Cardiac Function by Regulating Junctional Membrane Complex Activity

Author:

Quick Ann P.1,Wang Qiongling1,Philippen Leonne E.1,Barreto-Torres Giselle1,Chiang David Y.1,Beavers David1,Wang Guoliang1,Khalid Maha1,Reynolds Julia O.1,Campbell Hannah M.1,Showell Jordan1,McCauley Mark D.1,Scholten Arjen1,Wehrens Xander H.T.1

Affiliation:

1. From the Department of Molecular Physiology and Biophysics (A.P.Q., Q.W., L.E.P., G.B.-T., J.O.R., H.M.C., J.S., X.H.T.W), Cardiovascular Research Institute (A.P.Q., Q.W., L.E.P., G.B.-T., D.Y.C., D.B., G.W., J.O.R., H.M.C., J.S., M.D.M., X.H.T.W), Medical Scientist Training Program (D.Y.C., D.B., H.M.C.), Department of Medicine (Cardiology) (M.D.M., X.H.T.W), and Pediatrics (X.H.T.W.), Baylor College of Medicine, Houston, TX; Accelerated BS/MD Program, Department of Biology and Biochemistry,...

Abstract

Rationale: Junctional membrane complexes (JMCs) in myocytes are critical microdomains, in which excitation–contraction coupling occurs. Structural and functional disruption of JMCs underlies contractile dysfunction in failing hearts. However, the role of newly identified JMC protein SPEG (striated muscle preferentially expressed protein kinase) remains unclear. Objective: To determine the role of SPEG in healthy and failing adult hearts. Methods and Results: Proteomic analysis of immunoprecipitated JMC proteins ryanodine receptor type 2 and junctophilin-2 (JPH2) followed by mass spectrometry identified the serine–threonine kinase SPEG as the only novel binding partner for both proteins. Real-time polymerase chain reaction revealed the downregulation of SPEG mRNA levels in failing human hearts. A novel cardiac myocyte-specific Speg conditional knockout (MCM- Speg fl/fl ) model revealed that adult-onset SPEG deficiency results in heart failure (HF). Calcium (Ca 2+ ) and transverse-tubule imaging of ventricular myocytes from MCM- Speg fl/fl mice post HF revealed both increased sarcoplasmic reticulum Ca 2+ spark frequency and disrupted JMC integrity. Additional studies revealed that transverse-tubule disruption precedes the development of HF development in MCM- Speg fl/fl mice. Although total JPH2 levels were unaltered, JPH2 phosphorylation levels were found to be reduced in MCM- Speg fl/fl mice, suggesting that loss of SPEG phosphorylation of JPH2 led to transverse-tubule disruption, a precursor of HF development in SPEG-deficient mice. Conclusions: The novel JMC protein SPEG is downregulated in human failing hearts. Acute loss of SPEG in mouse hearts causes JPH2 dephosphorylation and transverse-tubule loss associated with downstream Ca 2+ mishandling leading to HF. Our study suggests that SPEG could be a novel target for the treatment of HF.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3