Differentiated Smooth Muscle Cells Generate a Subpopulation of Resident Vascular Progenitor Cells in the Adventitia Regulated by Klf4

Author:

Majesky Mark W.1,Horita Henrick1,Ostriker Allison1,Lu Sizhao1,Regan Jenna N.1,Bagchi Ashim1,Dong Xiu Rong1,Poczobutt Joanna1,Nemenoff Raphael A.1,Weiser-Evans Mary C.M.1

Affiliation:

1. From the Division of Renal Diseases and Hypertension (H.H., A.O., S.L., A.B., J.P., R.A.N., M.C.M.W.-E.) and Cardiovascular Pulmonary Research Program, Division of Cardiology (R.A.N., M.C.M.W.-E.), School of Medicine, Consortium for Fibrosis Research and Translation, University of Colorado, Aurora (M.C.M.W.-E.); Division of Endocrinology, Department of Medicine, Indiana University, Indianapolis (J.N.R.); Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research...

Abstract

Rationale: The vascular adventitia is a complex layer of the vessel wall consisting of vasa vasorum microvessels, nerves, fibroblasts, immune cells, and resident progenitor cells. Adventitial progenitors express the stem cell markers, Sca1 and CD34 (adventitial sca1-positive progenitor cells [AdvSca1]), have the potential to differentiate in vitro into multiple lineages, and potentially contribute to intimal lesions in vivo. Objective: Although emerging data support the existence of AdvSca1 cells, the goal of this study was to determine their origin, degree of multipotency and heterogeneity, and contribution to vessel remodeling. Methods and Results: Using 2 in vivo fate-mapping approaches combined with a smooth muscle cell (SMC) epigenetic lineage mark, we report that a subpopulation of AdvSca1 cells is generated in situ from differentiated SMCs. Our data establish that the vascular adventitia contains phenotypically distinct subpopulations of progenitor cells expressing SMC, myeloid, and hematopoietic progenitor-like properties and that differentiated SMCs are a source to varying degrees of each subpopulation. SMC-derived AdvSca1 cells exhibit a multipotent phenotype capable of differentiating in vivo into mature SMCs, resident macrophages, and endothelial-like cells. After vascular injury, SMC-derived AdvSca1 cells expand in number and are major contributors to adventitial remodeling. Induction of the transcription factor Klf4 in differentiated SMCs is essential for SMC reprogramming in vivo, whereas in vitro approaches demonstrate that Klf4 is essential for the maintenance of the AdvSca1 progenitor phenotype. Conclusions: We propose that generation of resident vascular progenitor cells from differentiated SMCs is a normal physiological process that contributes to the vascular stem cell pool and plays important roles in arterial homeostasis and disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3