Contribution of Impaired Mitochondrial Autophagy to Cardiac Aging

Author:

Dutta Debapriya1,Calvani Riccardo1,Bernabei Roberto1,Leeuwenburgh Christiaan1,Marzetti Emanuele1

Affiliation:

1. From the Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL (D.D., C.L., E.M.); Department of Orthopedics and Traumatology, University Hospital Agostino Gemelli, Catholic University of the Sacred Heart School of Medicine, Rome, Italy (E.M.); Department of Gerontology, Geriatrics and Physiatrics, University Hospital Agostino Gemelli, Catholic University of the Sacred Heart School of Medicine, Rome, Italy (R.C., R.B.); and Institute of...

Abstract

The prevalence of cardiovascular disease increases with advancing age. Although long-term exposure to cardiovascular risk factors plays a major role in the etiopathogenesis of cardiovascular disease, intrinsic cardiac aging enhances the susceptibility to developing heart pathologies in late life. The progressive decline of cardiomyocyte mitochondrial function is considered a major mechanism underlying heart senescence. Damaged mitochondria not only produce less ATP but also generate increased amounts of reactive oxygen species and display a greater propensity to trigger apoptosis. Given the postmitotic nature of cardiomyocytes, the efficient removal of dysfunctional mitochondria is critical for the maintenance of cell homeostasis, because damaged organelles cannot be diluted by cell proliferation. The only known mechanism whereby mitochondria are turned over is through macroautophagy. The efficiency of this process declines with advancing age, which may play a critical role in heart senescence and age-related cardiovascular disease. The present review illustrates the putative mechanisms whereby alterations in the autophagic removal of damaged mitochondria intervene in the process of cardiac aging and in the pathogenesis of specific heart diseases that are especially prevalent in late life (eg, left ventricular hypertrophy, ischemic heart disease, heart failure, and diabetic cardiomyopathy). Interventions proposed to counteract cardiac aging through improvements in macroautophagy (eg, calorie restriction and calorie restriction mimetics) are also presented.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3