Loss of Angiotensin-Converting Enzyme-2 Exacerbates Diabetic Cardiovascular Complications and Leads to Systolic and Vascular Dysfunction

Author:

Patel Vaibhav B.1,Bodiga Sreedhar1,Basu Ratnadeep1,Das Subhash K.1,Wang Wang1,Wang Zuocheng1,Lo Jennifer1,Grant Maria B.1,Zhong JiuChang1,Kassiri Zamaneh1,Oudit Gavin Y.1

Affiliation:

1. From the Division of Cardiology (V.B.P., S.B., S.K.D., J.L., J.Z., G.Y.O.), Department of Medicine and Mazankowski Alberta Heart Institute (V.B.P., S.B., R.B., S.K.D., W.W., J.L., J.Z., Z.K., G.Y.O.), University of Alberta, Alberta, Edmonton, Canada; Department of Physiology (R.B., W.W., Z.K., G.Y.O.), University of Alberta, Edmonton, Canada; Division of Cardiology, Department of Medicine and Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Edmonton, Canada (Z.M.); Department of...

Abstract

Rationale: Diabetic cardiovascular complications are reaching epidemic proportions. Angiotensin-converting enzyme-2 (ACE2) is a negative regulator of the renin-angiotensin system. We hypothesize that loss of ACE2 exacerbates cardiovascular complications induced by diabetes. Objective: To define the role of ACE2 in diabetic cardiovascular complications. Methods and Results: We used the well-validated Akita mice, a model of human diabetes, and generated double-mutant mice using the ACE2 knockout (KO) mice (Akita/ACE2 −/y ). Diabetic state was associated with increased ACE2 in Akita mice, whereas additional loss of ACE2 in these mice leads to increased plasma and tissue angiotensin II levels, resulting in systolic dysfunction on a background of impaired diastolic function. Downregulation of SERCA2 and lipotoxicity were equivalent in Akita and Akita/ACE2KO hearts and are likely mediators of the diastolic dysfunction. However, greater activation of protein kinase C and loss of Akt and endothelial nitric oxide synthase phosphorylation occurred in the Akita/ACE2KO hearts. Systolic dysfunction in Akita/ACE2KO mice was linked to enhanced activation of NADPH oxidase and metalloproteinases, resulting in greater oxidative stress and degradation of the extracellular matrix. Impaired flow-mediated dilation in vivo correlated with increased vascular oxidative stress in Akita/ACE2KO mice. Treatment with the AT1 receptor blocker, irbesartan rescued the systolic dysfunction, normalized altered signaling pathways, flow-mediated dilation, and the increased oxidative stress in the cardiovascular system. Conclusions: Loss of ACE2 disrupts the balance of the renin-angiotensin system in a diabetic state and leads to an angiotensin II/AT1 receptor-dependent systolic dysfunction and impaired vascular function. Our study demonstrates that ACE2 serves as a protective mechanism against diabetes-induced cardiovascular complications.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3