MicroRNA-Mediated In Vitro and In Vivo Direct Reprogramming of Cardiac Fibroblasts to Cardiomyocytes

Author:

Jayawardena Tilanthi M.1,Egemnazarov Bakytbek1,Finch Elizabeth A.1,Zhang Lunan1,Payne J. Alan1,Pandya Kumar1,Zhang Zhiping1,Rosenberg Paul1,Mirotsou Maria1,Dzau Victor J.1

Affiliation:

1. From Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC (T.M.J., B.E., E.A.F., L.Z., J.A.P., Z.Z., P.R., M.M., V.J.D.); Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center, Durham, NC (T.M.J., B.E., L.Z., J.A.P., Z.Z., M.M., V.J.D.); Ion Channel Research Group, Duke University Medical Center, Durham, NC (E.A.F., P.R.); Sarah Steadman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC (P.R.); and the...

Abstract

Rationale: Repopulation of the injured heart with new, functional cardiomyocytes remains a daunting challenge for cardiac regenerative medicine. An ideal therapeutic approach would involve an effective method at achieving direct conversion of injured areas to functional tissue in situ. Objective: The aim of this study was to develop a strategy that identified and evaluated the potential of specific micro (mi)RNAs capable of inducing reprogramming of cardiac fibroblasts directly to cardiomyocytes in vitro and in vivo. Methods and Results: Using a combinatorial strategy, we identified a combination of miRNAs 1, 133, 208, and 499 capable of inducing direct cellular reprogramming of fibroblasts to cardiomyocyte-like cells in vitro. Detailed studies of the reprogrammed cells demonstrated that a single transient transfection of the miRNAs can direct a switch in cell fate as documented by expression of mature cardiomyocyte markers, sarcomeric organization, and exhibition of spontaneous calcium flux characteristic of a cardiomyocyte-like phenotype. Interestingly, we also found that miRNA-mediated reprogramming was enhanced 10-fold on JAK inhibitor I treatment. Importantly, administration of miRNAs into ischemic mouse myocardium resulted in evidence of direct conversion of cardiac fibroblasts to cardiomyocytes in situ. Genetic tracing analysis using Fsp1Cre-traced fibroblasts from both cardiac and noncardiac cell sources strongly suggests that induced cells are most likely of fibroblastic origin. Conclusions: The findings from this study provide proof-of-concept that miRNAs have the capability of directly converting fibroblasts to a cardiomyocyte-like phenotype in vitro. Also of significance is that this is the first report of direct cardiac reprogramming in vivo. Our approach may have broad and important implications for therapeutic tissue regeneration in general.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 683 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3