Endothelial Cell Palmitoylproteomic Identifies Novel Lipid-Modified Targets and Potential Substrates for Protein Acyl Transferases

Author:

Marin Ethan P.1,Derakhshan Behrad1,Lam TuKiet T.1,Davalos Alberto1,Sessa William C.1

Affiliation:

1. From the Vascular Biology and Therapeutics Program (E.P.M., B.D., A.D., W.C.S.), Department of Pharmacology (B.D., A.D., W.C.S.), and Department of Nephrology (E.P.M.), Yale University School of Medicine, New Haven, CT; WM Keck Foundation Biotechnology Resource Laboratory (T.T.L.), Keck MS and Proteomics Resources, Yale University, New Haven, CT.

Abstract

Rationale: Protein S-palmitoylation is the posttranslational attachment of a saturated 16-carbon palmitic acid to a cysteine side chain via a thioester bond. Palmitoylation can affect protein localization, trafficking, stability, and function. The extent and roles of palmitoylation in endothelial cell (EC) biology is not well-understood, partly because of technological limits on palmitoylprotein detection. Objective: To develop a method using acyl-biotinyl exchange technology coupled with mass spectrometry to globally isolate and identify palmitoylproteins in ECs. Methods and Results: More than 150 putative palmitoyl proteins were identified in ECs using acyl-biotinyl exchange and mass spectrometry. Among the novel palmitoylproteins identified is superoxide dismutase-1, an intensively studied enzyme that protects all cells from oxidative damage. Mutation of cysteine-6 prevents palmitoylation, leads to reduction in superoxide dismutase-1 activity in vivo and in vitro, and inhibits nuclear localization, thereby supporting a functional role for superoxide dismutase-1 palmitoylation. Moreover, we used acyl-biotinyl exchange to search for substrates of particular protein acyl transferases in ECs. We found that palmitoylation of the cell adhesion protein platelet endothelial cell adhesion molecule-1 is dependent on the protein acyl transferase ZDHHC21. We show that knockdown of ZDHHC21 leads to reduced levels of platelet endothelial cell adhesion molecule-1 at the cell surface. Conclusions: Our data demonstrate the utility of EC palmitoylproteomics to reveal new insights into the role of this important posttranslational lipid modification in EC biology.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3