Recommendations for Reporting Machine Learning Analyses in Clinical Research

Author:

Stevens Laura M.12,Mortazavi Bobak J.3,Deo Rahul C.4ORCID,Curtis Lesley5,Kao David P.1ORCID

Affiliation:

1. Division of Cardiology, University of Colorado School of Medicine, Aurora, CO (L.M.S., D.P.K.).

2. Institute for Precision Cardiovascular Medicine, American Heart Association, Dallas, TX (L.M.S.).

3. Department of Computer Science and Engineering, Texas A&M University, College Station, TX (B.J.M.).

4. Division of Cardiovascular Medicine and One Brave Idea, Brigham and Women’s Hospital, Boston, MA (R.C.D.).

5. Department of Population Health Sciences and Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC (L.C.).

Abstract

Use of machine learning (ML) in clinical research is growing steadily given the increasing availability of complex clinical data sets. ML presents important advantages in terms of predictive performance and identifying undiscovered subpopulations of patients with specific physiology and prognoses. Despite this popularity, many clinicians and researchers are not yet familiar with evaluating and interpreting ML analyses. Consequently, readers and peer-reviewers alike may either overestimate or underestimate the validity and credibility of an ML-based model. Conversely, ML experts without clinical experience may present details of the analysis that are too granular for a clinical readership to assess. Overwhelming evidence has shown poor reproducibility and reporting of ML models in clinical research suggesting the need for ML analyses to be presented in a clear, concise, and comprehensible manner to facilitate understanding and critical evaluation. We present a recommendation for transparent and structured reporting of ML analysis results specifically directed at clinical researchers. Furthermore, we provide a list of key reporting elements with examples that can be used as a template when preparing and submitting ML-based manuscripts for the same audience.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3