Statistical Methods to Monitor Risk Factors in a Clinical Database

Author:

Siregar Sabrina1,Roes Kit C.B.1,van Straten Albert H.M.1,Bots Michiel L.1,van der Graaf Yolanda1,van Herwerden Lex A.1,Groenwold Rolf H.H.1

Affiliation:

1. From the Department of Cardio-Thoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands (S.S., L.A.v.H.); Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands (K.C.B.R., M.L.B., Y.v.d.G., R.H.H.G.); and Department of Cardio-Thoracic Surgery, Catharina Hospital, Eindhoven, the Netherlands (A.H.M.v.S.).

Abstract

Background— Comparison of outcomes requires adequate risk adjustment for differences in patient risk and the type of intervention performed. Both unintentional and intentional misclassification (also called gaming) of risk factors might lead to incorrect benchmark results. Therefore, misclassification of risk factors should be detected. We investigated the use of statistical process control techniques to monitor the frequency of risk factors in a clinical database. Methods and Results— A national population-based study was performed using simulation and statistical process control. All patients who underwent cardiac surgery between January 1, 2007, and December 31, 2009, in all 16 cardiothoracic surgery centers in the Netherlands were included. Data on 46 883 consecutive cardiac surgery interventions were extracted. The expected risk factor frequencies were based on 2007 and 2008 data. Monthly frequency rates of 18 risk factors in 2009 were monitored using a Shewhart control chart, exponentially weighted moving average chart, and cumulative sum chart. Upcoding (ie, gaming) in random patients was simulated and detected in 100% of the simulations. Subtle forms of gaming, involving specifically high-risk patients, were more difficult to identify (detection rate of 44%). However, the accompanying rise in mean logistic European system for cardiac operative risk evaluation (EuroSCORE) was detected in all simulations. Conclusions— Statistical process control in the form of a Shewhart control chart, exponentially weighted moving average, and cumulative sum charts provide a means to monitor changes in risk factor frequencies in a clinical database. Surveillance of the overall expected risk in addition to the separate risk factors ensures a high sensitivity to detect gaming. The use of statistical process control for risk factor surveillance is recommended.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3