Privacy-Preserving Generative Deep Neural Networks Support Clinical Data Sharing

Author:

Beaulieu-Jones Brett K.1,Wu Zhiwei Steven2,Williams Chris3,Lee Ran4,Bhavnani Sanjeev P.5,Byrd James Brian4,Greene Casey S.3

Affiliation:

1. Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia. (B.K.B.-J.)

2. Computer Science and Electrical Engineering Department, University of Minnesota, Minneapolis (Z.S.W.).

3. Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia. (C.W., C.S.G.)

4. Division of Cardiovascular Medicine, Department of Medicine, University of Michigan Medical School, Ann Arbor (R.L., J.B.B.).

5. Scripps Clinic and Research Foundation, San Diego, CA (S.P.B.).

Abstract

Background: Data sharing accelerates scientific progress but sharing individual-level data while preserving patient privacy presents a barrier. Methods and Results: Using pairs of deep neural networks, we generated simulated, synthetic participants that closely resemble participants of the SPRINT trial (Systolic Blood Pressure Trial). We showed that such paired networks can be trained with differential privacy, a formal privacy framework that limits the likelihood that queries of the synthetic participants’ data could identify a real a participant in the trial. Machine learning predictors built on the synthetic population generalize to the original data set. This finding suggests that the synthetic data can be shared with others, enabling them to perform hypothesis-generating analyses as though they had the original trial data. Conclusions: Deep neural networks that generate synthetic participants facilitate secondary analyses and reproducible investigation of clinical data sets by enhancing data sharing while preserving participant privacy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

Reference24 articles.

1. Statistics in Medicine — Reporting of Subgroup Analyses in Clinical Trials

2. Home The SPRINT Data Analysis Challenge. The SPRINT Data Analysis Challenge n.d. https://challenge.nejm.org/pages/home. Accessed December 1 2018.

3. A Randomized Trial of Intensive versus Standard Blood-Pressure Control

4. Basu S Sussman JB Rigdon J Steimle L Denton B Hayward R. Development and Validation of a Clinical Decision Score to Maximize Benefit and Minimize Harm from Intensive Blood Pressure Treatment 2017. https://challenge.nejm.org/posts/5815. Accessed April 19 2019.

5. Dagan N Tsadok MA Hoshen M Arkiv A Karpati T Gofer I Leibowitz M Gilutz H Podjarny E; Bachmat E Balicer R. To Treat Intensively or Not – Individualized Decision Making Support Tool 2017. https://challenge.nejm.org/posts/5826. Accessed April 19 2019.

Cited by 188 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3