Feasibility of Rapid Linear-Endocardial and Epicardial Ventricular Ablation Using an Irrigated Multipolar Radiofrequency Ablation Catheter

Author:

Nazer Babak1,Walters Tomos E.1,Duggirala Srikant1,Gerstenfeld Edward P.1

Affiliation:

1. From the Electrophysiology Section, Division of Cardiology, Department of Medicine, University of California San Francisco.

Abstract

Background— A common strategy for ablation of scar-based ventricular tachycardia is delivering multiple lesions in a linear pattern. Methods and Results— We tested the efficacy of a novel linear irrigated multipolar ablation catheter capable of creating linear lesions with a single application. Healthy swine underwent endocardial and epicardial linear ablation using a novel linear irrigated ablation catheter; control animals underwent focal lesions in a linear pattern over 3.5 cm with an irrigated radiofrequency catheter. The linear catheter contained 7 irrigated electrodes spaced over 3.5 cm and could deliver ≤25 W to each electrode. Linear ablation required significantly less radiofrequency time than focal ablation (56±11 versus 497±110 seconds; P <0.0001). At gross pathology, linear (n=18) epicardial lines were longer than focal (n=8) epicardial lines (3.3±0.7 versus 2.1±0.9 cm; P <0.0005), with greater volume (3.8±2.9 versus 1.5±1.6 cm 3 ; P =0.002). There was no difference between linear (n=22) and focal (n=7) endocardial line length or volume. Gaps (length 2.8±0.9 mm) were present in 53% of focal lines and 0% of linear ablation lines. No perforations, steam pops, or thrombus were noted. Conclusions— Compared with sequential focal radiofrequency ablation in a linear pattern, an irrigated multipolar linear ablation catheter safely delivers contiguous endocardial or epicardial lesions without gaps in a single ablation. This catheter shows promise for decreasing ventricular tachycardia ablation procedure time and improving outcome.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3