Quantification of the Transmural Dynamics of Atrial Fibrillation by Simultaneous Endocardial and Epicardial Optical Mapping in an Acute Sheep Model

Author:

Gutbrod Sarah R.1,Walton Richard1,Gilbert Stephen1,Meillet Valentin1,Jaïs Pierre1,Hocini Mélèze1,Haïssaguerre Michel1,Dubois Rémi1,Bernus Olivier1,Efimov Igor R.1

Affiliation:

1. From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (S.R.G., I.R.E.); L’Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, France (S.R.G., R.W., S.G., V.M., P.J., M.H., M.H., R.D., O.B., I.R.E.); Inserm, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France (R.W., V.M., P.J., M.H., M.H., R.D., O.B.); Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux U1045, Bordeaux, France (R.W., V.M., P.J.,...

Abstract

Background— Therapy strategies for atrial fibrillation based on electric characterization are becoming viable personalized medicine approaches to treat a notoriously difficult disease. In light of these approaches that rely on high-density surface mapping, this study aims to evaluate the presence of 3-dimensional electric substrate variations within the transmural wall during acute episodes of atrial fibrillation. Methods and Results— Optical signals were simultaneously acquired from the epicardial and endocardial tissue during acute fibrillation in ovine isolated left atria. Dominant frequency, regularity index, propagation angles, and phase dynamics were assessed and correlated across imaging planes to gauge the synchrony of the activation patterns compared with paced rhythms. Static frequency parameters were well correlated spatially between the endocardium and the epicardium (dominant frequency, 0.79±0.06 and regularity index, 0.93±0.009). However, dynamic tracking of propagation vectors and phase singularity trajectories revealed discordant activity across the transmural wall. The absolute value of the difference in the number, spatial stability, and temporal stability of phase singularities between the epicardial and the endocardial planes was significantly >0 with a median difference of 1.0, 9.27%, and 19.75%, respectively. The number of wavefronts with respect to time was significantly less correlated and the difference in propagation angle was significantly larger in fibrillation compared with paced rhythms. Conclusions— Atrial fibrillation substrates are dynamic 3-dimensional structures with a range of discordance between the epicardial and the endocardial tissue. The results of this study suggest that transmural propagation may play a role in atrial fibrillation maintenance mechanisms.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3