Characterization of the Genetic Program Linked to the Development of Atrial Fibrillation in CREM-IbΔC-X Mice

Author:

Seidl Matthias D.1,Stein Juliane1,Hamer Sabine1,Pluteanu Florentina1,Scholz Beatrix1,Wardelmann Eva1,Huge Andreas1,Witten Anika1,Stoll Monika1,Hammer Elke1,Völker Uwe1,Müller Frank U.1

Affiliation:

1. From the Institute of Pharmacology and Toxicology, University of Münster, Germany (M.D.S., J.S., S.H., F.P., B.S., F.U.M.); Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Germany (A.H., A.W., M.S.); Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany (E.W.); Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany (E.H., U.V.); and German Centre for Cardiovascular Research, Partner Site...

Abstract

Background— Reduced expression of genes regulated by the transcription factors CREB/CREM (cAMP response element-binding protein/modulator) is linked to atrial fibrillation (AF) susceptibility in patients. Cardiomyocyte-directed expression of the inhibitory CREM isoform CREM-IbΔC-X in transgenic mice (TG) leads to spontaneous-onset AF preceded by atrial dilatation and conduction abnormalities. Here, we characterized the altered gene program linked to atrial remodeling and development of AF in CREM-TG mice. Methods and Results— Atria of young (TGy, before AF onset) and old (TGo, after AF onset) TG mice were investigated by mRNA microarray profiling in comparison with age-matched wild-type controls (WTy/WTo). Proteomic alterations were profiled in young mice (8 TGy versus 8 WTy). Annotation of differentially expressed genes revealed distinct differences in biological functions and pathways before and after onset of AF. Alterations in metabolic pathways, some linked to altered peroxisome proliferator–activated receptor signaling, muscle contraction, and ion transport were already present in TGy. Electron microscopy revealed significant loss of sarcomeres and mitochondria and increased collagen and glycogen deposition in TG mice. Alterations in electrophysiological pathways became prominent in TGo, concomitant with altered gene expression of K + -channel subunits and ion channel modulators, relevant in human AF. Conclusions— The most prominent alterations of the gene program linked to CREM-induced atrial remodeling were identified in the expression of genes related to structure, metabolism, contractility, and electric activity regulation, suggesting that CREM transgenic mice are a valuable experimental model for human AF pathophysiology.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3